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We investigate the melting properties of the bcc refractory metals V and W, and the disordered equiatomic
VW alloy from first principles. We show that thermal vibrations have a large impact on the electronic density
of states (DOS) and thus considerably affect the electronic contribution to the free energy. For W, the impact of
vibrations on the electronic free energy of solid and liquid is different. This difference substantially impacts the
computed melting point and also triggers a large electronic heat capacity difference between solid and liquid.
For V, although vibrations likewise affect the electronic free energy, the effect on the melting properties cancels
out to a large degree. For the binary VW alloy we observe a similar impact as for W, but slightly weaker. The
underlying physics is explained in terms of the electronic DOS of the solid and liquid phases. Based on our
accurate first-principles results, we reveal critical limitations of the Sommerfeld approximation in predicting
the electronic heat capacity difference between solid and liquid. Our results thus prompt us to scrutinize this
approximation which is often used in phase diagram parametrizations in the CALPHAD approach, as well as
for materials, such as W, that have a large electronic DOS difference between solid and liquid at the melting
temperature.
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I. INTRODUCTION

Melting properties of materials, such as the melting tem-
perature, entropy, and enthalpy of fusion, are key parameters
for materials design. They are essential to determine the lattice
stability, a quantity that provides the basis for all multicom-
ponent phase diagrams, in particular within the CALPHAD
method [1–3]. The melting point of a material is also a
key quantity in searching for high-performance refractory
materials. Recently, bcc refractory high-entropy alloys, e.g.,
VNbMoTaW, were shown to have superior high-temperature
mechanical properties [4–6]. They are expected—but not
yet confirmed—to have high melting temperatures based on
the finding that a high melting point correlates with high-
temperature strength in such alloys [7].

Experimental measurements of melting properties of bcc
refractory alloys and their unary components are challenging,
exactly due to the high melting temperatures. For example, the
reported experimental enthalpies of fusion are significantly
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scattered, even for the unary metals V and W. The values
range from 17 to 28 kJ/mol for V [8–10] and from 35 to
61 kJ/mol for W [11–15]. Since some of the unary data are
selected as input to the CALPHAD method, their uncertainty
eventually results in large uncertainties in the extrapolated
phase diagrams and thermodynamic properties of all depen-
dent multicomponent systems.

An alternative to experimental measurements is the cal-
culation of the melting properties from ab initio based on
density functional theory (DFT). The main challenge in ab
initio simulations is the accurate calculation of the free en-
ergy of both solid and liquid by taking into account all
relevant entropic contributions, i.e., atomic vibrations includ-
ing the anharmonic contribution and electronic excitations
including the electron-vibration coupling. The anharmonic
contribution and the electron-vibration coupling in bcc met-
als have generally a more complex temperature dependence
compared to fcc metals [16]. Importantly, their impact on
the free energy of solid and liquid may be different, thus
affecting the solid-liquid transition temperature. For exam-
ple, based on ab initio derived potentials, Moriarty [17]
found that the electron-vibration contribution to the solid
and liquid free energies lowers the calculated melting tem-
perature of bcc Mo from ∼7000 K to 3528 K (experiment:
2883 K).

For many metals, the electronic contribution to the heat
capacity difference between solid and liquid at the melting
point is small [18,19]. One exception is W, where this dif-
ference was reported to be 0.5 kB/atom [18–20] based on
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the Sommerfeld (SOM) approximation [21,22] using the elec-
tronic density of states (DOS) of the solid and liquid evaluated
in Refs. [17,23,24]. The Sommerfeld model has been widely
used to calculate the electronic free energy and the electronic
heat capacity due to its high efficiency by considering only
the temperature independent DOS at the Fermi level. How-
ever, the predictions from the Sommerfeld approximation are
usually not in quantitatively good agreement with experiment,
even if an accurate electronic DOS determined from electronic
structure calculations is used. Instead, ab initio molecular dy-
namic (MD) simulations can accurately predict the electronic
free energy and the electronic heat capacity by taking into
account all relevant physical contributions. Zhang et al . [25]
applied this approach to bcc W and found that the electronic
contribution to the free energy strongly increases in magnitude
with temperature due to thermal vibrations. However, due
to the severe computational cost of these methods, ab initio
studies on the liquid free energy of bcc refractory metals, on
the electronic contribution difference between solid and liquid
free energy and on the influence of the contribution on their
melting properties are scarce.

A suitable alternative for accurately calculating melting
properties is the ab initio free-energy approach [26–30]. It
is based on ab initio computed Gibbs energies of the solid
and liquid from which the melting point and melting proper-
ties can be determined. Though in principle providing DFT
accuracy, this approach faces two major challenges: the high
computational cost and the reliance on a good reference sys-
tem for the involved thermodynamic integration (TI). These
challenges can be overcome by utilizing the two-optimized ref-
erence thermodynamic integration using Langevin dynamics
(TOR-TILD) methodology [31,32]. The computational effi-
ciency of TOR-TILD has been demonstrated for unary fcc
metals Al, Cu, and Ni, preserving an ab initio accuracy of
1 meV/atom [31,32]. However, applications of TOR-TILD
have so far been limited to unaries and its applicability to
alloys has not yet been evaluated.

Here we apply TOR-TILD to calculate the melting prop-
erties for the bcc refractory metals V and W and for the
disordered equiatomic binary VW alloy based on a bcc lattice.
V and W are important refractory materials and their melting
temperatures have been computed previously with ab initio
MD. For example, Wang et al . [33] calculated the melting
point of W using the free-energy correction approach and a
direct ab initio MD simulation on the solid-liquid coexisting
system. For V, the melting curves at high pressures were
computed with the two-phase modeling [34] and with a com-
bined approach of the two-phase method and the modified-Z
method [35]. However, these studies focused only on the
melting point and, moreover, did not evaluate the impact of
electronic excitations and their coupling to vibrations on the
melting properties. Also, there is not yet a detailed study on
the melting properties of the binary VW alloy from ab initio
MD. In the present work, besides computing various melting
properties for V, W, and VW, the impact of vibrations on the
electronic free energy, the electronic contribution difference
to solid and liquid and the influence of this difference on the
melting properties are also investigated. Based on our ab initio
MD results, the limitations of the Sommerfeld approximation
in predicting the electronic free energy and the electronic

heat capacity are discussed. Further, the performance of two
exchange correlation functionals, the local-density approxi-
mation (LDA) and the generalized gradient approximation
(GGA), in predicting melting properties of the three investi-
gated systems are compared and discussed.

II. METHODOLOGY

Within the TOR-TILD methodology, the Gibbs energies of
the solid and liquid need to be calculated. In the following,
we describe the most relevant aspects of the solid (Sec. II A)
and liquid (Sec. II B) free-energy calculations. Considerations
on the configurational entropy for the VW binary are given in
Sec. II C. The utilized computational software and parameters
are given in Sec. II D.

A. Solid free energy

To accurately capture the solid free energy, all rele-
vant excitation mechanisms should be carefully considered;
quasiharmonic and anharmonic atomic vibrations, electronic
excitations for the static lattice, and the electron-vibration
coupling. The quasiharmonic contribution and the electronic
contribution for a static lattice can be calculated straight-
forwardly [36]. Computationally most challenging are the
anharmonic free-energy calculations including the electron-
vibration coupling, generally carried out by TI calculations
[37–39].

In the present work we mainly rely on the two-stage up-
sampled thermodynamic integration using Langevin dynamics
(TU-TILD) method [39] to calculate the solid anharmonic
free energy. This method utilizes a specially designed inter-
atomic potential (labeled “ref”) as an intermediate reference
to separate the TI into two stages, first from the quasiharmonic
system to “ref” and second from “ref” to the ab initio solid.
The free-energy surface of “ref” is calculated on a dense set
of volumes and temperatures and used later for the liquid
free-energy calculation (where “ref” is labeled “ref1”). As
“ref” is fitted to accurately represent the high-temperature
ab initio solid, it can significantly reduce the number of ab
initio MD steps to reach the convergence. To further speed
up the TI calculations from “ref” to the ab initio solid, the
upsampling technique [37] is applied, i.e., first performing
ab initio MD simulations with low DFT parameters (k points
and cutoff) and second running static calculations with high
DFT parameters on a few uncorrelated snapshots from the MD
trajectories to correct the error introduced in the first step. The
details of the TU-TILD method are discussed in Ref. [39].

The TU-TILD method uses the embedded atom method
(EAM) or the modified embedded atom method (MEAM)
potentials as the intermediate reference for TI. This approach
has shown remarkable efficiency for calculations on unary
fcc metals, such as Cu, Al, and Ni [31,32]. When going
to bcc-based refractory materials with complex temperature-
dependent anharmonic contributions, machine learning poten-
tials show better performance than EAM/MEAM potentials
with respect to computational efficiency [40,41]. Since
machine learning potentials, specifically moment tensor po-
tentials (MTPs) [42], can accurately predict the DFT energies
and forces even for multicomponent materials, they allow
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one to substitute the expensive TI to DFT by more efficient
free-energy perturbation calculations for computing the solid
anharmonic free energy without sacrificing ab initio accuracy
[40,41,43]. A method proposed recently along these lines was
termed the “direct upsampling” approach [41]. Its efficiency
enables to access a dense free-energy surface to derive accu-
rate thermodynamic properties. We have tested this approach
for calculating the solid free energy of binary VW using GGA.
The Gibbs energies and thermodynamic properties from di-
rect upsampling agree well with those from the TU-TILD
method but can be obtained at significantly reduced compu-
tational cost. Detailed discussions on the accuracy, efficiency,
and implementation of direct upsampling are documented in
Ref. [41].

The vacancy contribution can be important for investigat-
ing thermodynamic material properties. It is accessible using
the developments in Refs. [37,38]. For bcc V and W, the
contribution of vacancies to the total free energy was shown
to be negligible for bulk thermodynamic properties even at
the melting point [44]. Therefore, it is not considered in the
present work.

B. Liquid free energy

Free-energy calculations for the liquid are more challeng-
ing than for the solid because of the absence of a static
reference lattice. TI from an appropriate reference system
therefore plays a crucial role for such calculations [26–32].
In particular, the free energy of the reference system needs to
be easily accessible. Further, the proximity of the reference
system to the ab initio liquid directly affects the computa-
tional efficiency. In the present work, we calculate the liquid
free energies utilizing TOR-TILD [31], where two optimized
references (“ref1” and “ref2”) are used to speed up the calcu-
lations (hence “TOR”). Both references are EAM potentials
fitted using the MEAMfit code [45]. The first reference “ref1”
is fitted to ab initio solid energies and used for the solid free-
energy calculations in the aforementioned TU-TILD method.
The solid free-energy surface of “ref1” is used as a starting
point to obtain the liquid free-energy surface of “ref2” by
the interface method [46] and TI between “ref1” and “ref2”.
Since “ref2” is specially fitted to the ab initio liquid energies,
the TI from “ref2” to the ab initio liquid is very efficient.
Additionally, the upsampling technique is applied for further
improving the computational efficiency. Note that electronic
excitations and their adiabatic coupling to atomic motion for
the liquid phase are fully implicitly included during the TI
calculations from “ref2” to the ab initio liquid. Further details
about the TOR-TILD methodology can be found in Ref. [31].

C. Configurational entropy

For alloys, such as the here considered VW binary, the
configurational entropy needs to be accounted for in both solid
and liquid free-energy calculations. In general, this contri-
bution will affect the melting properties, which derive from
free-energy differences. However, as discussed below, for the
specific alloy system considered here, this contribution largely
cancels out.

V and W are known to be soluble in the solid phase over
the full composition range [47]. It is therefore reasonable to
assume an ideally disordered solid solution for the melting
property calculations. To validate this assumption, we apply
the low-rank potential (LRP) method [48–50] together with
Monte Carlo (MC) simulations to compute the temperature-
dependent ordering tendency of solid VW. The LRP training
is performed as proposed in Ref. [48]. For the initial training,
10 special quasirandom structures (SQS) [51] with a super-
cell size of 3 × 3 × 3 (in terms of the cubic unit cell) are
generated and the corresponding energies are calculated with
DFT (using the GGA functional). As the main scope is the
high-temperature regime, an electronic smearing temperature
of 3000 K and a lattice constant of 3.22 Å are employed, the
latter being in between our computed values for the solid and
liquid at this temperature. As in Ref. [48], an ensemble of 10
LRPs is trained. Using this ensemble of LRPs, 10 indepen-
dent MC simulations are carried out for the same 3 × 3 × 3
supercell size. New configurations for retraining the potentials
are generated from temperature regimes, where the calculated
specific heat capacity, a direct outcome of the MC simulations
and a sensitive measure for the phase stability and short-range
order, differs significantly among the 10 potentials. The re-
sulting 50 new atomic configurations are then added to the
training and validation set to retrain the LRP ensemble. Based
on the retrained potentials, the resulting MC simulations do
not show any significant deviations among the 10 potentials.
The final training and validation sets are respectively 54 and 6
with a training error of ∼0.2 meV/atom and a validation error
of ∼0.5 meV/atom.

Using the 10 LRPs trained according to the above proce-
dure, we performed 10 independent MC simulations on larger
8 × 8 × 8 supercells with 1024 atoms. The temperature was
varied between 10 to 3000 K with steps of 10 K. The resulting
configurational part of the specific heat capacity CV for solid
VW is shown in Fig. 1(a) and we observe a phase transition at
330 K. The low-temperature ground state for the binary VW
is the B32 structure as shown in Fig. 1(a). It is consistent with
the finding in Refs. [52,53].

In order to be able to quantify the ordering tendency for
both solid and liquid, we introduce the concept of the fraction
of atomic pairs (FAPs). The FAPs are defined as Ni j/Ntotal,
where Ni j is the number of pairs between atom i and j and
Ntotal the total number of all pairs within a given cutoff r.
For the binary VW alloy, there are V-V, W-W, V-W, and W-V
pairs (the latter two being symmetrically equivalent) in the
structure. When each of these pairs has a similar probability
to show up in the structure, i.e., FAP ≈1/4, the structure can
be assumed to be disordered. The FAPs thus convey the same
information as the conventional Warren-Cowley short-range
order (SRO) parameters [54,55]. However, the FAPs can be
consistently utilized when characterizing the liquid structure,
while this is not possible for the normal definition of the SRO
parameters. To compute the FAPs for solid VW in Fig. 1(b),
we utilize a cutoff of r = 4 Å for which the first two nearest
neighbors of the solid [corresponding to the first peak in the
pair distribution function g(r) of the liquid] are enclosed. The
FAPs confirm the occurrence of an order-disorder transition
at low temperatures. As the temperature interval considered
for the VW binary alloy (2600 to 3000 K) is way above
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B32

disordered

perfectly
disordered

FIG. 1. (a) Temperature dependence of the configurational part
of the specific heat capacity CV computed from MC simulations us-
ing the LRP for the solid binary VW alloy. The sharp peak indicates
an order-disorder phase transition. The ground-state B32 structure
and the high-temperature disordered structure are indicated. (b) The
FAPs for solid VW (solid lines) calculated from the MC simulations
and for liquid VW (dotted lines with circles) from MD simulations.

the transition temperature of 330 K, the solid can be safely
assumed to be fully disordered.

V and W are also known to be well soluble in the liquid
phase [47]. This is to be expected based on the good solubility
already in the solid phase. It is thus reasonable to also assume
a randomly disordered liquid solution for the melting prop-
erty calculations. A proper calculation of the configurational
entropy for the liquid is challenging, due to the randomly
distributed atomic positions on top of the chemical disorder.
The LRP method is limited to a reference lattice and thus not
suitable for the liquid. As an estimate, we perform NPT MD
simulations for the liquid with an MTP [42] fitted to our ab
initio liquid data. The training dataset for the MTP includes
1600 uncorrelated configurations from our ab initio MD tra-
jectories computed with GGA. The corresponding volumes
and temperatures for these configurations are consistent with
those used for computing the DFT liquid free-energy surface
in Table I.

Applying the fitted MTP we perform MD simulations on
liquid VW using a supercell of 8 × 8 × 8 with 1024 atoms.
The simulation time is 100 ps. Ten uncorrelated snapshots
from an equilibrated part of the MD simulations are utilized to
compute the averaged FAPs at each temperature with a cutoff
of 4 Å. As shown in Fig. 1(b), the FAPs for the liquid fluctuate
around 0.25 and exhibit no correlations within the investigated
temperature range. Thus, similarly as for the solid, the VW
liquid can be considered to be fully disordered for the melting
property calculations.

Based on the above arguments, we assume perfect chem-
ical disorder for both solid and liquid VW for the melting
analysis. The configurational energy is captured by utiliz-
ing a random distribution of the V and W atoms. For the
small supercells required for the DFT simulations, the random
distribution is modeled by SQS structures. For a 128 atom
supercell the energy differences between different SQS are
in the range of only 3 meV/atom. For the configurational
entropy, we utilize the ideal mixing term for both solid and
liquid (specifically, −kBT ln 0.5 for the 50:50 composition).
It therefore cancels in the differences relevant for the melting
properties.

D. Computational details

For all our DFT calculations we use the projector-
augmented wave (PAW) method [56] as implemented in VASP
[57–60]. PAW potentials with 11 and 14 valence electrons are
used for V and W, respectively. LDA and GGA are employed
for the exchange-correlation functional, with the Perdew-
Burke-Ernzerhof (PBE) [61] parametrization for GGA. The
sets of explicitly DFT computed volume and temperature
points for the solid and liquid free-energy surfaces are given
in Table I. For all three systems, the DFT solid and liquid
calculations are performed in a 4 × 4 × 4 supercell with 128
atoms. For the binary VW alloy, an SQS is employed for the
solid. This SQS structure is then heated up to 3500 K, in order
to obtain the liquid structure. The explicitly computed DFT
volume-temperature points are used as input to fit polynomials
up to third order to obtain an analytical description of the
free-energy surface as a function of volume and temperature.
As mentioned in Sec. II A, the upsampling technique [37], i.e.,
applying high DFT parameter calculations on a few (typically
10) snapshots taken from the ab initio MD simulations with
low DFT parameters, is used to speed up the TI calculations.
For V, the plane wave cutoff and k point mesh (Monkhorst-
Pack [62]) are set to 300 eV and 2 × 2 × 2, respectively, for
the low converged calculations, and 400 eV and 5 × 5 × 5,
respectively, for the high converged calculations. For W and
VW, the plane wave cutoff and k point mesh (Monkhorst-
Pack [62]) are set to 320 eV and 2 × 2 × 2, respectively, for
the low converged calculations, and 400 eV and 5 × 5 × 5,
respectively, for the high converged calculations.

For the reference potential calculations we use the
LAMMPS software package [63]. As mentioned in Sec. II B,
the interface method [46] is employed to calculate the melt-
ing points of the “ref1” potentials, T m

ref1. For V and W, a
tetragonal 13 × 13 × 26 supercell with 8788 atoms is used
resulting in T m

ref1 = 2046 K for V (experiment: 2183 K) and
T m

ref1 = 3319 K for W (experiment: 3687 K). For the binary
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TABLE I. Meshes of explicitly computed volumes V (per atom), and temperatures T , used for the thermodynamic integration from the
optimized potentials to DFT for V, W, and VW. The volumes are additionally expressed in terms of a corresponding bcc lattice constant
a = (2V )1/3.

Solid Liquid

V (Å3) 12.58, 12.84, 13.10, 13.37, 13.64 13.37, 13.64, 13.91, 14.19, 14.47
LDA a (Å) 2.93, 2.95, 2.97, 2.99, 3.01 2.99, 3.01, 3.03, 3.05, 3.07

T (K) 2000, 2200, 2400, 2600 2000, 2200, 2400, 2600
V

V (Å3) 13.64, 14.05, 14.47, 14.90 14.90, 15.04, 15.33, 15.63, 15.78
GGA a (Å) 3.01, 3.04, 3.07, 3.1 3.1, 3.11, 3.13, 3.15, 3.16

T (K) 1800, 2000, 2200, 2400 1800, 2000, 2200, 2400, 2600
V (Å3) 14.47, 14.90, 15.33, 15.78, 16.23 15.78, 16.23, 16.69, 17.16, 17.64, 18.13

LDA a (Å) 3.07, 3.1, 3.13, 3.16, 3.19 3.16, 3.19, 3.22, 3.25, 3.28, 3.31
T (K) 3400, 3600, 3800, 4000, 4200 3400, 3600, 3800, 4000, 4200

W
V (Å3) 16.23, 16.54, 16.85, 17.16 17.16, 17.48, 17.81, 18.13, 18.46

GGA a (Å) 3.19, 3.21, 3.23, 3.25 3.25, 3.27, 3.29, 3.31, 3.33

T (K) 3000, 3200, 3400, 3600 3000, 3200, 3400, 3600

V (Å3) 14.33, 14.61, 14.90, 15.19 14.90, 15.19, 15.48, 15.78

LDA a (Å) 3.06, 3.08, 3.1, 3.12 3.1, 3.12, 3.14, 3.16

VW T (K) 2800, 3000, 3200, 3400 2800, 3000, 3200, 3400

V (Å3) 14.90, 15.19, 15.48, 15.78 15.78, 16.08, 16.38, 16.69

GGA a (Å) 3.1, 3.12, 3.14, 3.16 3.16, 3.18, 3.20, 3.22
T (K) 2400, 2600, 2800, 3000 2400, 2600, 2800, 3000

VW alloy, a tetragonal 16 × 16 × 32 supercell based on the
128-atom SQS structure with 16 384 atoms is employed. The
calculations result in a melting temperature T m

ref1 = 2421 K.
The corresponding CALPHAD value is 2780 K, which is
obtained by taking the crossing point of the solid and liquid
Gibbs energies extrapolated using Thermo-Calc 2023a [64],
as detailed in Sec. III C. The “ref1”potentials for all three
systems are fitted to ab initio MD trajectories of the cor-
responding solid using the GGA-PBE exchange-correlation
functional. Our previous studies [31,32] and the results below
show that the GGA-PBE functional predicts lower melting
points compared to experimental data due to its underbinding
property. Here this tendency is also reflected in the melting
points predicted by the empirical potentials since they have
been fitted to PBE calculations. The other reference potential
calculations are performed in a cubic 15 × 15 × 15 supercell
with 6750 atoms for V and W, and a cubic 16 × 16 × 16
supercell with 8192 atoms for the VW binary alloy. For fitting
the liquid free-energy surface of “ref2,” we use the same
volumes as for the DFT calculations (see Table I) but at a
denser temperature mesh (steps of 5 K).

For the ab initio and classical MD simulations we use a
time step of 5 fs and the Langevin thermostat with a friction
parameter of 0.01 fs−1 to control the temperature.

III. RESULTS AND DISCUSSION

Figures 2–4 present our main results, the calculated melt-
ing properties for V, W, and VW. The Gibbs energies are
referenced with respect to the energy of bcc V, W, and bi-
nary SQS VW at T = 0 K. The melting temperatures can
be determined by the crossing point of the solid and liquid
Gibbs energies. Note that for alloys, in contrast to unaries,
the solidus and liquidus temperature usually do not coincide

resulting in a melting interval with an upper (liquidus) and
lower (solidus) limit (see the cross symbols in Fig. 5) where
the alloy consists of solid and liquid phases simultaneously.
Within the CALPHAD community the crossing point of the
solid and liquid Gibbs energy is defined as T0 (without taking
into account the partitioning of elements). However, to avoid
confusion and be consistent with bcc V and W, in the present
work the term “melting temperature” is nevertheless used for
the binary VW.

A. Vanadium

In our previous work we found that, for fcc Cu, Al, and Ni,
the melting points predicted by the GGA-PBE and LDA func-
tionals provide a lower and upper bound for their experimental
melting temperatures [31,32]. The underlying reason is the
overbinding/underbinding property of LDA/PBE. The LDA
functional generally yields smaller lattice constants and stiffer
bulk moduli and phonon frequencies compared to experiment
and PBE [36]. Therefore, the stiffer LDA system is more
resistant to melting and exhibits a higher melting temperature.
Here we find a similar behavior for bcc V that LDA results in
a higher melting point (2230 K) and PBE provides a lower
one (2140 K), as shown in Figs. 2(a), 2(b), and 5. Our predic-
tions form a bound around the experimental melting point of
2183 K with a relatively small shift (−2% for PBE and +2%
for LDA).

Prior works on fcc Al, Cu, and Ni [36,65] indicate that
the T = 0 K lattice constants and bulk moduli predicted from
PBE and LDA provide a reliable ab initio confidence interval
for the corresponding experimental data. However, our current
calculations for bcc V using both functionals predict smaller
lattice constants and larger bulk moduli than the experimental
values (see Table II). The same result was also obtained by
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FIG. 2. Temperature dependence of various thermodynamic properties of solid and liquid V using PBE and LDA.

Haas et al . [65] for bcc V while using LDA and different
GGA functionals including PBE. In our study this property is
inherited even at high temperatures in the volume expansion
of bcc V. As shown in Fig. 6, the volumes of bcc V at the
corresponding melting temperature from both LDA and PBE

calculations locate below the experimental data [66]. Recent
studies on bcc V [67,68] indicate that this could be a result of
strong electronic correlations, not fully captured by standard
DFT. Indeed, the 0 K equilibrium lattice constant predicted by
PBE employing the dynamical mean field approach is 3.061 Å
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FIG. 3. Temperature dependence of various thermodynamic properties of solid and liquid W using PBE and LDA.

[68]. This value overestimates the lattice constant compared
to the experimental value (3.027 Å [69]) as one usually would
intuit for a PBE treatment. The good agreement between the
experimental melting temperature and our predicted values
using standard DFT for PBE and LDA indicates, however, that

the impact of strong electron correlations likely cancels out in
the melting temperature predictions. A similar observation has
been made in our previous work on ferromagnetic Ni [32] for
which magnetic contributions to solid and liquid free energies
cancel out at high temperatures.

094110-7



LI-FANG ZHU et al. PHYSICAL REVIEW B 109, 094110 (2024)

(a) PBE Gibbs energy (b) LDA Gibbs energy

(c) PBE enthalpy (d) LDA enthalpy

(e) PBE entropy (f) LDA entropy

(g) PBE volume (h) LDA volume

FIG. 4. Temperature dependence of various thermodynamic properties of solid and liquid VW using PBE and LDA.

Regarding other melting properties, e.g., the enthalpy and
entropy of fusion, and the volume change at the melting
point, the experimental data are rather scattered as shown
in Table II. They do not fall in between our PBE and LDA
predictions, but some of them are rather close to our DFT
results. Overall, compared to using PBE as the exchange-
correlation functional, the overbinding and thus stiffer LDA

system still predicts a higher melting point, larger enthalpy of
fusion, smaller solid and liquid volumes, and smaller volume
change at the melting point.

B. Tungsten

For bcc W, the experimental values of some of the prop-
erties fall in between our LDA and PBE predictions. This is,
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FIG. 5. Concentration-temperature binary phase diagram of V-
W [47] constructed based on the measured incipient melting data
for the solidus from Ref. [70] (red empty squares) and the measured
data for the liquidus from Ref. [71] (red empty circles). The blue
squares are the LDA data and the orange ones the PBE data. The
red star is the melting temperature of the binary VW. It is given by
the temperature at which the solid and liquid Gibbs energy extracted
from the CALPHAD method cross. The dotted lines are the solidus
and liquidus lines computed using our PBE (orange) and LDA (blue)
Gibbs energies of V and W based on the ideal mixing approximation.

however, not true for all properties. For example, the melting
points predicted from PBE (3349 K) and LDA (3804 K)
encompass the experimental value (3687 K) as shown in
Figs. 3(a), 3(b), and 5. The experimental 0 K lattice constant
and bulk modulus also fall in between our PBE and LDA
results (see Table II). This feature remains for the computed
volumes at the melting temperature (see Fig. 6). However,
the volume changes at the melting point from both PBE
(0.97 Å3/atom) and LDA (0.87 Å3/atom) are smaller than
the experimental data (1.35–1.81 Å3/atom). The experimental
enthalpy and entropy of fusion also fall outside the window
of our PBE and LDA predictions. One needs to keep in
mind that experimental measurements of melting properties
are extremely difficult, and, consequently, the measured data
are rather scattered. In contrast, our PBE and LDA results are
consistent and provide more reliable predictions.

We find a strong impact of the electronic contribution
on predicting the melting point of W. Neglecting the elec-
tronic contribution results in an upward shift of the melting
temperature by 178 K for PBE (5% with respect to the ex-
perimental value) and 158 K for LDA (4% with respect to
the experimental value), i.e., 3527 K for PBE and 3962 K for
LDA. In an earlier work, Wang et al . computed the melting
point of W also using GGA-PBE as the exchange-correlation
functional [33]. They obtained 3450 K by the free-energy
correction approach and 3465 K by directly simulating the
solid-liquid coexistence. Both results are higher than our com-
puted value of 3349 K and closer to our result without taking
the electronic contribution into account. Additional sources
for the discrepancy can be the difference in computational
parameters. For example, in their calculations the p semicore
states were treated as valence states, only the � point was

used for the Brillouin-zone sampling, and small cutoff en-
ergies (273 eV for the free-energy correction approach and
223 eV for the coexisting approach) were utilized. In our
calculations we include both semicore s and p electrons as
valence states because the Wpv potential suffers from ghost
states at higher energies [25]. We also apply 400 eV as the
cutoff energy and choose a 5 × 5 × 5 k point mesh. Regarding
the melting point shift induced by the electronic contribution,
a similar phenomenon was reported for bcc Mo [17] where the
predicted melting point with and without electron-vibration
coupling was respectively 3528 K and ∼7000 K with a shift of
50%. The impact of the electronic contribution on the melting
temperatures of the three investigated cases are discussed in
detail in Sec. III D.

C. VW binary

Next, we test and analyze the performance of the TOR-
TILD approach to describe the binary VW alloy with an
equiatomic composition. Note that it is difficult to directly ex-
perimentally measure the melting temperature of VW (called
as T0 within the CALPHAD community). Therefore, in order
to compare with our LDA and GGA predictions, we estimate
an experimental value based on the available experimental
data using the CALPHAD method. The phase diagram of V-W
was obtained by Bratberg [47] based on the incipient melting
solidus data of Rudy [70] and the liquidus measurements of
Baron et al . [71], as shown in Fig. 5. Within Bratberg’s work
the temperature- and composition-dependent Gibbs energy
curves for V-W alloys have been derived [47]. Based on
the relevant thermodynamic parameters obtained by Bratberg
including the SGTE database (Scientific Group Thermodata
Europe) [72], we calculate the temperature-dependent Gibbs
energies of the solid and liquid at the equiatomic composition
using Thermo-Calc 2023a [64]. A melting point of 2780 K
is then obtained from the crossing point of those two curves.
Based on the Gibbs energies, we extract further melting prop-
erties such as enthalpy of fusion, entropy of fusion, and
volume change at the melting point, as shown in Table II.

The melting temperature obtained by the CALPHAD
method is once again located between our predicted PBE
(2704 K) and LDA (2877 K) values as shown in Figs. 4(a)
and 5. The relative shifts of our DFT predictions are rather
small (∼3%) compared to the CALPHAD value (2780 K).
As mentioned in Sec. III A, for bcc V, both PBE and LDA
predict smaller 0 K lattice constants and smaller volumes at
high temperatures compared to the experimental data. Here,
for the binary VW, due to the participation of V we observe
a similar behavior of PBE and LDA as shown in Fig. 6. In
particular, for both V and binary VW the PBE predictions
closely reproduce the experimental data or our calculated
CALPHAD values regarding the 0 K lattice constants and vol-
umes at high temperatures. In Fig. 6 we provide the volumes
at the corresponding melting temperatures of solid V, VW,
and W from PBE and LDA calculations and from experiment
or CALPHAD. They all follow Vegard’s law, but the DFT
predictions have a steeper slope than the experimental data.
Regarding the enthalpy of fusion of the binary VW, both PBE
and LDA predict larger values than the CALPHAD value.
The volume changes at the melting point predicted from PBE
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TABLE II. Calculated T = 0 K properties, lattice constant a0, and bulk modulus B0, and melting properties, melting temperature T m,
enthalpy of fusion �Hm, entropy of fusion �Sm, and volume change �V m at the melting temperature, for GGA-PBE and LDA. Melting
temperatures calculated without the electronic contribution T m

no−ele are also included. Moreover, the experimental or CALPHAD values are
included. As it is rather difficult to experimentally measure �V m, such values are rare or nonexistent. We have therefore added values (shown
in brackets) obtained by V m

liquid − V m
solid, where V m

liquid and V m
solid are the absolute experimental volumes of the liquid and solid at the experimental

melting point.

V VW W

GGA Experiment LDA GGA CALPHAD LDA GGA Experiment LDA

a0 (Å) 2.999 3.027a/3.024b 2.930 3.093 3.094g 3.040 3.182 3.165i 3.138
B0 (GPa) 183 157b 211 245 – 275 305 314j 336
T m (K) 2140 2172a/2183c/2201d 2230 2704 2780h 2877 3349 3687±7k,l 3804
T m

no−ele (K) 2161 – 2252 2803 – 2967 3527 – 3962
�Hm (kJ/mol) 24.31 26.5c/23.02d/17.32e 26.3 37.92 33.63h 39.78 44.31 50.34l/45.4m/61.4n 44.66
�Hm (meV/atom) 251.9 274.7c/238.6d/179.5e 272.6 393.0 348.6h 412.3 459.3 521.7l/470.5m/636.4n 462.8
�Sm [J/(mol K)] 11.36 12.14c/10.46d 11.79 14.02 12.09h 13.83 13.34 13.65l/12.31n 11.74
�Sm (kB/atom) 1.37 1.46c/1.26d 1.42 1.69 1.45h 1.66 1.60 1.64l/1.48n 1.41
�V m (Å3/atom) 0.63 0.57a/0.7c 0.54 0.68 0.80h 0.66 0.98 (1.35–1.81) 0.87
V m

liquid (Å3/atom) 15.16 15.51a/15.49c/14.75f 14.03 16.67 16.86h 15.78 18.46 18.31p/18.65q/18.77r 17.72
V m

solid (Å3/atom) 14.53 14.94a/14.79c 13.49 15.99 16.06h 15.12 17.48 16.94o/16.96s 16.85

aReference [69]; bReference [73]; cReference [74]; dReference [8]; eReference [9]; fReference [75]; gReference [70]; hReference [47];
iReference [76]; jReference [77]; kReference [78]; lReference [13]; mReference [14]; nReference [15]; oReference [79]; pReference [80];
qReference [81]; rReference [82]; sReference [83].

(0.68 Å3/atom) and LDA (0.66 Å3/atom) are similar, but
both are smaller than the CALPHAD value (0.80 Å3/atom).
This trend is consistent with that for W as shown in Table II.
Note that there are generally no data about the volume change
from the solid to the liquid at the melting temperature in the
database. But they can be important for defining the phase
boundary in the phase diagram. With our approach these data
can be easily accessed.

As discussed in Sec. II C, both the solid and liquid VW
binary can be considered fully disordered at elevated temper-
atures (Fig. 1). Consequently, the ideal mixing approximation
becomes applicable. By employing the ideal mixing approx-

FIG. 6. Volumes of solid V, VW, and W at the corresponding
melting temperature from PBE (orange), experiment (CALPHAD for
VW) (black) and LDA (blue). The dotted lines are a guide to the eye
and emphasize the linear trend.

imation and utilizing the Gibbs energy values for V and W
obtained from PBE and LDA, the solidus and liquidus lines
are easily determined as depicted by the dotted lines in Fig. 5.
The over/under binding tendencies inherent in LDA/PBE are
evident in these lines, with LDA data shifting upwards and
PBE data shifting downwards.

D. Analysis of the electronic contribution

As mentioned in Sec. III B, the electronic contribution can
significantly shift the predicted melting temperature for W

FIG. 7. Computed shift in the melting point induced by the
electronic contribution to the Gibbs energy difference between the
solid and liquid using PBE (orange) and LDA (blue). The electronic
Gibbs energy difference �Gel,AIMD

solid−liquid is obtained by (Gel
solid-Gno−el

solid ) −
(Gel

liquid-Gno−el
liquid ) at the corresponding melting point.
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FIG. 8. Electronic contribution to (a) Gibbs energy, Gel; (b) en-
tropy, Sel; and (c) heat capacity, Cel

P , for bcc and liquid W from PBE
calculations.

because the electronic contribution lowers the liquid Gibbs
energy more than it lowers the solid one [see Fig. 8(a)].
With the PBE functional the Gibbs energy difference be-
tween solid and liquid W due to the electronic contribution,
�Gel,AIMD

solid−liquid (“AIMD” indicates ab initio MD simulation), is
23.1 meV/atom. It triggers a melting point shift of −178 K
(see Fig. 7). For V and binary VW, the Gibbs energy differ-
ences are 2.5 and 13.9 meV/atom, respectively. They lead to
a melting point shift of −21 K for V and −99 K for VW. These
results reveal that the electronic contribution has a strong
impact on W but a much smaller one for V. For binary VW
the electronic contribution falls midway between V and W.
Thus, it should be carefully taken into account for predicting
the melting properties of binary VW. As shown in Fig. 7, the
melting point shift has an approximately linear relationship
with the electronic Gibbs energy difference for both PBE and
LDA calculations. The slopes from PBE and LDA data are

rather close. As the entropy of fusion �Sm corresponds to
�Gsolid−liquid/�T m, it indicates that the three systems have a
constant/similar entropy of fusion. We discuss this further in
Sec. III G in comparison to fcc elements.

It should be stressed that the stronger electronic Gibbs en-
ergy contribution in the liquid phase as compared to the solid
phase [see Fig. 8(a)] does not necessarily mean that the deriva-
tive quantities show the same trend. The electronic entropy of
solid and liquid, i.e., the first derivative of the electronic Gibbs
energy with respect to temperature, turns out to be similar
for W at the melting point with only a small difference of
∼0.04 kB/atom [see Fig. 8(b)]. A small electronic entropy
difference between solid and liquid is also observed for V and
VW. Moving on to the electronic heat capacity, i.e., the second
derivative of the Gibbs energy, we see a markedly different
behavior than for the electronic Gibbs energy of W. For CP,
the electronic contribution is much stronger for the solid than
for the liquid [see Fig. 8(c)], which is in qualitative contrast
to the electronic Gibbs energy. For VW we observe the same
trend as for W. But for V the electronic contribution to the
difference in solid and liquid CP at the predicted melting point
is relatively small, which is consistent with the difference for
the electronic Gibbs energy of V.

The impact of the electronic contribution on the Gibbs
energy of the solid and liquid can be traced back to the
respective electronic DOS and the corresponding DOS differ-
ence at the Fermi level. A key point to consider here is the
electron-vibration coupling which generally leads to a strong
smoothening of the electronic DOS at high temperatures
[25,32,84]. It is therefore essential to analyze the electronic
DOS computed from ab initio MD simulations at relevant
temperatures. Moreover, to relate the DOS difference between
the solid and liquid to the electronic Gibbs energy difference,
consistent equilibrium volumes of the solid and liquid at the
corresponding temperature should be used.

Figure 9 shows the computed electronic DOS’s of the solid
and liquid V, W, and binary VW from ab initio MD at temper-
atures close to the experimental/CALPHAD melting points
and at the consistent equilibrium volumes. We focus on results
obtained from PBE. For V, the high temperature DOS of the
liquid (red line) at the Fermi level is slightly above that of the
solid (blue line) with a difference of �Nliquid−solid (EF ) = 0.07
states/(eV atom) [see Fig. 9(a) and Table III], which results
in the aforementioned electronic Gibbs energy difference of
2.5 meV/atom. For binary VW, the presence of W introduces
more valence electrons in the DOS and shifts the Fermi level
to higher energies as compared to V [see Fig. 9(b)]. In this
case, a small gap opens between the solid and liquid DOS
at the Fermi level with a difference of 0.22 states/(eV atom),
which corresponds to the electronic Gibbs energy difference
of 13.9 meV/atom in Fig. 7.

For pure W, the Fermi level is pushed even further to higher
energies due to more valence electrons. As a consequence,
the Fermi level falls into a pronounced minimum in the solid
DOS [see the blue line in Fig. 9(c)]. Having the Fermi level
in a pseudo valley indicates that the chemical bond in bcc W
retains a strong covalent character even at high temperatures.
Compared to the DOS of bcc W, the DOS of liquid W is
more smeared out due to a higher degree of disorder. The
difference in the solid and liquid DOS at the Fermi level is
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FIG. 9. The electronic DOS of the solid and liquid phase at their
respective equilibrium volumes for (a) V at 2200 K, (b) VW at
2800 K, and (c) W at 3600 K. The black dashed lines give the elec-
tronic DOS for the ideal static lattice with the electronic temperature
equal to the selected MD temperature. The blue and red lines are
the mean solid and liquid DOS’s from a statistically converged set
of uncorrelated AIMD snapshots. The standard deviation resulting
from the different snapshots is shown by the blue/red shaded areas.
The gray lines indicate the Fermi-Dirac occupation f (E ) at the
corresponding temperature. All DOS’s are computed using PBE.

0.25 states/(eV atom) as shown in Fig. 9(c). Although this
difference is similar as that in VW, it triggers a larger elec-
tronic Gibbs energy difference of 23.1 meV/atom in W. This
can be explained by two factors—the relatively stronger Fermi

TABLE III. The electronic DOS at the Fermi level for
solid, Nsolid (EF ), and liquid, Nliquid (EF ), the DOS difference,
�Nliquid−solid (EF ), the electronic Gibbs energy difference based on
the Sommerfeld approximation, �Gel,SOM

solid−liquid, and our calculated dif-

ference from AIMD, �Gel,AIMD
solid−liquid. The DOS values correspond to

the mean of 10 snapshots from AIMD simulations at 2200 K for V,
2800 K for VW, and 3600 K for W [cf. Figs. 9(a)–9(c)].

V VW W

Nsolid (EF ) (states/eV atom) 1.42 1.15 0.95
Nliquid (EF ) (states/eV atom) 1.49 1.37 1.2
�Nliquid−solid (EF ) (states/eV atom) 0.07 0.22 0.25
�Gel,SOM

solid−liquid (meV/atom) 4.1 21.1 39.6
�Gel,AIMD

solid−liquid (meV/atom) 2.5 13.9 23.1

broadening in W due to its higher melting point than that of
VW, as shown by the solid gray lines in Fig. 9, and the larger
difference between the solid and liquid DOS’s (red and blue
lines) in W around the Fermi level (gray shaded region).

Actually, most transition metals with high melting points,
such as V, do not show a large difference in the DOS of the
solid and liquid at the Fermi level [19]. What makes W special
is its half-filled electron d-band in the bcc lattice structure. A
similar behavior was observed earlier for the other group VI
elements bcc Mo [17] and Cr [24].

E. Heat capacity of solid and liquid W

The heat capacity is important in thermodynamic model-
ing, particularly of phase stability and phase diagrams. It is
thus critical to accurately estimate different physical contri-
butions to the heat capacity. As the electronic contribution has
the largest impact on W among the three investigated systems,
in the following the heat capacity of W is discussed as an
example.

Figure 10(a) shows the quasiharmonic (qh), anharmonic
(ah), and static electronic (el,static) contributions, and the
contribution from electron-vibration coupling (el-vib) to the
isobaric heat capacity CP. Figure 10(b) shows the vibrational
(vib) and electronic contributions (el,static + el-vib) to CP

and to the isochoric heat capacity CV for liquid W. The or-
ange regions in both figures mark the electronic contribution
including its coupling to atomic vibrations. The impact is
large for both solid and liquid. In Fig. 10(c) we compare
our calculated CP for the solid with the liquid one, and with
experimental data from the literature. The calculated CP for
bcc W (black solid line) lies close to the experimental data
(red dotted line below the melting point), only when the
electronic contribution is fully taken into account. Not taking
the electronic contribution (black dashed line) into account
clearly increases the deviation from the experimental data. A
similar conclusion can also be made for the liquid CP, where
our calculations including the electronic contribution (blue
solid lines) fall closer to most of the experimental data points
(red symbols above melting point).

The heat capacity CP of a liquid is often assumed to be
temperature independent, as shown by the red dotted line
above melting point. However, our calculated CP for liq-
uid W decreases within the investigated temperature range
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FIG. 10. Computed isobaric heat capacity CP as a function of temperature for (a) bcc W and (b) liquid W. The individual contributions are
indicated (see text). Cel represents the data fully taking into account the electronic contributions (both static and coupling to vibrations), while
Cno−el stands for the data without any electronic contribution. For liquid W, we also include the isochoric heat capacity CV , with and without
electronic contribution. (c) CP of bcc and liquid W in comparison to experiment/CALPHAD. The faded lines indicate the metastable regime of
the solid above the melting point and of the liquid below the melting point. The red dotted lines represent the analytical model from Ref. [13]
based on experimental data with temperatures ranging from 253 K to 3680 K [91–97]. The red up-triangle, star and down-triangle mark
selected liquid heat capacities from different assessments [11–13] at the melting point. In (c), both our DFT data and the experimental data are
plotted on a homologous temperature scale, i.e., they are normalized by the corresponding calculated/experimental melting temperatures. All
shown DFT data correspond to PBE.

3000–3600 K from 6.31 to 5.17 kB/atom and CV from 4.99
to 4.0 kB/atom [Fig. 10(b)]. The decreasing behavior of the
heat capacity for liquid W was observed for both PBE and
LDA calculations. This trend qualitatively agrees with a re-
cent CALPHAD assessment for liquid W [18]. In fact, for
many liquids, literature data indicates that the heat capacity
decreases with temperature [85–87]. For instance, Forsblom
and Grimvall showed a decreasing CP from the melting point
T m to 2 times T m in liquid Al using MD simulations with
empirical potentials [88]. The reason of a decreasing heat
capacity in liquids has been attributed to the increasing loss
of two transverse modes in the liquid [88–90]. Experiments
also indicate a decreasing CP with temperature [85]. How-
ever, measuring the heat capacity of a liquid is in general
very challenging. The enthalpy H (T ) is measured in the first
place and CP is obtained by computing the first derivative
∂H
∂T . Thus, the experimental accuracy is often insufficient to
resolve deviations from a linear relationship between H and
T . Empirical potential simulations can help, but their accu-
racy strongly depends on the quality of the potential. The
TOR-TILD method provides instead the possibility to ob-
tain an accurate heat capacity of the liquid phase fully from
ab initio.

F. Limitations of the Sommerfeld approximation

The Sommerfeld model [21,22] has been widely used to
parametrize the electronic free energy and electronic heat
capacity in thermodynamic modeling approaches, especially
in the CALPHAD community [3]. The SOM approximation
to the electronic free energy assumes a quadratic temperature
dependence and reads as

F el
SOM = − 1

6π2k2
BT 2N (EF ), (1)

where the value of the DOS at the Fermi level N (EF )
is the only input parameter and therefore crucially affects

the computed electronic free energy F el
SOM. As shown in

Figs. 9(a)–9(c), the DOS’s of the ideal lattice (black dashed
lines) for V, VW, and W are significantly different from those
of the solid computed at high temperatures (blue lines). Thus,
using the DOS of the ideal static lattice to compute F el

SOM
would introduce a huge error. We therefore use our calcu-
lated high-temperature DOS at the corresponding equilibrium
volume and compute the electronic Gibbs energy differ-
ences between the solid and liquid based on the Sommerfeld
approximation in Eq. (1). The computed Gibbs energy dif-
ferences, �Gel,SOM

solid−liquid, are respectively 4.1 meV/atom for V,
21.1 meV/atom for VW, and 39.6 meV/atom for W (see
Table III). Even though the high-temperature DOS’s used
here for both solid and liquid fully include the impact of
atomic vibrations and electron-vibration coupling, they are
still quantitatively different from our direct ab initio MD
results (2.5 meV/atom for V, 13.9 meV/atom for VW, and
23.1 meV/atom for W, see Table III).

The electronic heat capacity is related to the second deriva-
tive of the electronic free energy with respect to temperature.
Therefore, the error introduced in the electronic Gibbs energy
due to the simplification of the Sommerfeld approximation
can be significantly enlarged in the prediction of the electronic
heat capacity. Based on Eq. (1) the electronic contribution to
the isochoric heat capacity in the Sommerfeld approximation
can be obtained by

Cel
V,SOM = 1

3π2k2
BT N (EF ). (2)

Then the electronic heat capacity difference between solid and
liquid can be accessed by

�Cel
V,SOM = 1

3π2k2
BT m[Nliquid(EF ) − Nsolid(EF )], (3)

where the DOS’s are computed at the corresponding equilib-
rium volumes. Similarly to our previous discussions on the
electronic Gibbs energy difference, the difference in elec-
tronic heat capacity also varies significantly depending on
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FIG. 11. Electronic contribution to the heat capacity difference
between solid and liquid W from the SOM approximation and from
AIMD. “SOM_static Cel

V ” indicates the value obtained by the Som-
merfeld approaximation using the solid DOS of the ideal static lattice
[the black dashed line in Fig. 9(c)], “SOM_AIMD Cel

V ” the value
obtained by the Sommerfeld approximation using the DOS of the
solid at high temperatures [the blue line in Fig. 9(c)] calculated from
AIMD, “AIMD Cel

V ” and “AIMD Cel
P ” the AIMD values at constant

volume and pressure, respectively.

the DOS used. For example, keeping the high-temperature
DOS of the liquid fixed, when the DOS of the solid changes
from that of the static lattice to the high-temperature DOS,
the electronic heat capacity difference changes from 0.69
kB/atom to 0.26 kB/atom (see the red and blue bars in
Fig. 11).

In Ref. [19] Grimvall estimated an electronic heat capacity
difference of 0.5 kB/atom using the Sommerfeld approxi-
mation. It lies in between the two Sommerfeld evaluations
considered here (0.69 and 0.26 kB/atom). The small dis-
crepancy can be explained as follows. In his approximation
[19] the DOS of solid W was derived from a calculation

for the ideal static lattice using the full-potential linearized
augmented-plane-wave method [23]. Further, the DOS of liq-
uid W was estimated from a comparison with the calculated
DOS for bcc and liquid Cr [24] and Mo [17].

However, our full ab initio MD approach gives qualita-
tively different results for W. At 3600 K the difference is
−0.55 kB/atom as shown by the orange bar in Fig. 11. The
negative sign indicates that the electronic heat capacity of
the solid is larger than that of the liquid. When going to
Cel

P corresponding to the typical experimental conditions, the
difference between solid and liquid is more prominent with a
value of −3.9 kB/atom at 3600 K (the green bar in Fig. 11).
The qualitative difference between the results from the Som-
merfeld model (positive values) and those from our ab initio
MD calculations (negative values) demonstrates the limitation
of applying the Sommerfeld model to predict the electronic
heat capacity difference between the solid and liquid.

G. Enthalpy and entropy of fusion for bcc and fcc

Based on experimental data, Sawamura [98] derived an
empirical relationship between the enthalpy of fusion and the
melting point. Both bcc and fcc metals show a linear relation-
ship with the same slope but with different offsets. Sawamura
[98] further stated that, even though V has a bcc lattice, it
rather falls onto the relationship of the fcc metals. We utilize
the ab initio results from the present study for the bcc metals
V, W, and the binary VW alloy and from our previous works
for the fcc metals Al, Cu, Ni [31,32] to scrutinize the empirical
prediction.

Figure 12(a) shows the PBE, LDA, and experimental en-
thalpy of fusions for various systems as a function of the
consistent melting point. For the fcc systems, we indeed ob-
serve a linear relationship (see the solid line labeled “fcc”),
in which the theoretical and experimental data are very con-
sistent. However, the experimentally derived suggestion that
bcc V falls onto this fcc line cannot be confirmed with our
calculated data. Instead, the ab initio–derived enthalpy of
fusion of bcc V lies above the fcc line. This finding is also

FIG. 12. (a) Enthalpy and (b) entropy of fusion computed from PBE (orange) and LDA (blue) as a function of the corresponding
computed melting temperature. The red symbols are from experiment [8,9,12–15,74,99–101] or derived from Gibbs energies extracted with
the CALPHAD method. In (a), the black lines are linear fits to the DFT data (both PBE and LDA) for fcc and bcc metals. In (b), the dashed
line corresponds to the value given by Richard’s rule.
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FIG. 13. (a) Comparison between computed (PBE and LDA) and experimental/CALPHAD melting points of Al, Cu, Ni, V, W, and binary
VW. The empty squares represent data without taking into account the electronic free-energy contribution. Note that PBE and LDA provide a
lower and upper bound for all experimental melting points. (b) Correlation between the deviation from experiment for the lattice constants �a
at T = 0 K and the melting temperatures �T m. Data with and without taking into account the electronic free-energy contribution are provided.
Arrows indicate the change due to the electronic contribution for the systems with a strong impact. The black dashed line is a linear fit of the
data with the electronic contribution. The Pearson correlation coefficient r and the standard deviation σ of the fitted data are given in (b).

supported by two experimental measurements from literature.
The previous suggestion on bcc V may be a false consequence
of experimental scatter.

Figure 12(a) further reveals that the enthalpy of fusions
of all the investigated bcc systems lie above the fcc line. A
linear fit of these data points is obtained and shown by the
line labeled “bcc.” However, the fit is not as good as for the
fcc elements, and further simulations are required to elaborate
the relationship. Nevertheless, with the highly accurate theo-
retical data from the present work, one can see the tremendous
benefit in complimenting the strongly scattered experimental
values, e.g., from 35 to 61 kJ/mol for W.

For the entropy of fusion, a simple empirical rule,
Richard’s rule, suggests that the entropy of fusion of most ma-
terials is ≈1 kB/atom [19]. Figure 12(b) shows the PBE, LDA,
and experimental entropy of fusions. They confirm the ap-
proximately constant value of the entropy of fusion regardless
of the melting temperature. The mean values from PBE and
LDA are ≈1.43 kB/atom and ≈1.36 kB/atom, respectively.
These values are close to the mean value (1.36 kB/atom)
obtained from experimental data. Our computed DFT results
and the experimental data from literature fall within the gray
belt between 1.1 and 1.75 kB/atom. Therefore, the Richard’s
rule can be considered as a lower bound of “true” entropy of
fusion for the investigated systems.

H. Performance of GGA and LDA in predicting
melting properties

The performance of various exchange-correlation func-
tionals has been systematically evaluated on several T =
0 K material properties, such as lattice constants, bulk mod-
uli, or elastic constants [65]. However, the functionals have
been rarely tested on melting properties of materials due to
the computational costs involved in ab initio MD simulations.

The efficiency of the TOR-TILD method could allow us to fill
the research gap in this respect.

Figure 13(a) gives our calculated melting points from both
PBE and LDA as a function of the experimental melting
temperature for bcc V, W, VW binary, fcc Al, Cu, and Ni
[31,32]. This plot demonstrates the applicability of the con-
cept of the ab initio confidence interval to all investigated
systems, i.e., the experimental melting points fall in between
the PBE and LDA predictions. Figure 13(b) indicates that the
under(over)estimation of the melting points by PBE (LDA)
is, in general, correlated with the deviations in the computed
equilibrium lattice constants from the experimental ones.
The Pearson correlation coefficient r is used to measure the
strength of the linear correlation. A value of −0.83 is obtained
for the data taking into account the electronic contribution,
indicating a strong anticorrelation. A linear fit for these data
is given by the black dashed line in Fig. 13(b), with a standard
deviation of 3.6%. The reason that bcc V from PBE falls out
of the bottom-right box (�a > 0 and �T m < 0) is that the
PBE also underestimates the equilibrium lattice constant as
LDA does, but its prediction is much closer to experimental
data. For the binary VW a similar performance of PBE and
LDA for predicting the equilibrium lattice constant as for V
is observed likely due to the participation of V. As the PBE
predicted equilibrium lattice constant for the binary VW is
almost overlapping with the experimental data (see Table II),
the PBE prediction for binary VW in Fig. 13(b) falls on the
border line of �a = 0.

IV. CONCLUSIONS

A key insight of the present work is the strong impact of
electronic excitations on the melting point of W. Including
properly electronic excitations, and very importantly their
coupling to atomic vibrations, into the finite-temperature ab
initio modeling reduces the melting point by 178 K. The
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electrons also affect the heat capacity of W, both in its solid
and liquid phase, but with a different intensity in each phase.
The physical reason for the difference between the solid and
liquid phase can be traced back to and understood in terms
of the electronic density of states in the vicinity of the Fermi
level. The electronic impact emanates to the VW binary and
can be expected to affect W containing alloys in general,
for example, the recently intensively investigated class of
refractory high-entropy alloys. Thermodynamic modeling of
melting properties of such alloys should therefore integrate
the electronic free energies. Crucially, in doing so, one should
be very cautious about the Sommerfeld approximation, which
has been shown here to have severe limitations.

The heat capacity of W in the liquid phase, including the
contribution of electronic excitations, shows a decreasing tem-
perature dependence. Such a dependence was observed earlier
with empirical potentials and experimentally but could be
manifested only now with finite-temperature ab initio simu-
lations. Supportively, the decreasing temperature dependence
of the liquid heat capacity in W is observed for both em-
ployed exchange-correlation functionals, the (LDA and the
generalized gradient approximation (GGA-PBE). The here
utilized methodology thus fills a gap by complementing the
challenging high-temperature experiments which often show
strong scatter in the measured heat capacity data.

When considering absolute quantities such as the melt-
ing temperature one has to be aware of potentially larger
discrepancies. For W, the predicted melting temperature is
below the experimental value by more than 300 K when the
GGA-PBE exchange-correlation functional is employed. The
confidence in such calculations can be increased by additional
calculations with a second exchange-correlation functional,
specifically the LDA. This approach provides a lower and an
upper bound to the experimental data. These bounds function

as an ab initio confidence interval, since the confidence in
predicting experiment is larger when the bounds are narrower.
The present results for V, W, and VW—together with previous
results for Al, Cu, and Ni—show that the confidence-interval
concept applies to the melting points of all these elements.

To facilitate future computations, a part of the TOR-
TILD methodology has been implemented as an independent
workflow in pyiron [102]—an integrated development en-
vironment for computational material science—and can be
applied with arbitrary empirical potentials using the inter-
face method [103]. The corresponding pyiron notebook for
the present work with respect to the interface method is
available [104].
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