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Machine Learning-Enabled Tomographic Imaging of
Chemical Short-Range Atomic Ordering

Yue Li,* Timoteo Colnaghi, Yilun Gong,* Huaide Zhang, Yuan Yu, Ye Wei, Bin Gan,
Min Song, Andreas Marek, Markus Rampp, Siyuan Zhang, Zongrui Pei, Matthias Wuttig,
Sheuly Ghosh, Fritz Körmann, Jörg Neugebauer, Zhangwei Wang,* and Baptiste Gault*

In solids, chemical short-range order (CSRO) refers to the self-organization of
atoms of certain species occupying specific crystal sites. CSRO is increasingly
being envisaged as a lever to tailor the mechanical and functional properties
of materials. Yet quantitative relationships between properties and the
morphology, number density, and atomic configurations of CSRO domains
remain elusive. Herein, it is showcased how machine learning-enhanced
atom probe tomography (APT) can mine the near-atomically resolved APT
data and jointly exploit the technique’s high elemental sensitivity to provide a
3D quantitative analysis of CSRO in a CoCrNi medium-entropy alloy. Multiple
CSRO configurations are revealed, with their formation supported by state-of-
the-art Monte-Carlo simulations. Quantitative analysis of these CSROs allows
establishing relationships between processing parameters and physical prop-
erties. The unambiguous characterization of CSRO will help refine strategies
for designing advanced materials by manipulating atomic-scale architectures.

1. Introduction

Over time, strategies were developed to tailor the proper-
ties of materials to societal needs, by manipulating their
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compositions, structures, and imperfec-
tions from the macro- to microscale and
even atomic scale. Alloy making tradi-
tionally involves the introduction of small
quantities of one or more species, solutes,
into a matrix of a solvent element. Dur-
ing processing, one or more (meta)stable
phases form that modify the response to
physical or mechanical stimulation.[1] In
the past decade, so-called high/medium-
entropy alloys (H/MEAs) have been in-
troduced, whereby multiple elements are
mixed in equal, or close to equal quan-
tity. Although initially assumed to be
chemically disordered,[2] i.e., atoms from
these principal elements randomly oc-
cupy sites of the crystalline lattice, re-
cent studies have suggested that atomic-
scale, chemical short-range order (CSRO)
is far more prevalent in H/MEAs than

initially assumed, offering a potential lever to tailor their
properties.[2b,3]

A representative H/MEA is CoCrNi, in which the presence and
nature of CSRO are currently debated.[2b,3b,d–g,4] Transmission
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electron microscopy (TEM)-based approaches are most preva-
lently used to resolve CSRO,[2b,3b,d,g,5] but reports on the pres-
ence and configuration of CSRO have been thus far contradic-
tory, even for samples synthesized in the same conditions (Table
S1; Supplementary Text, Supporting Information). Due to the in-
trinsic limit of two-dimensional projection imaging, it has been
pointed out that the observed electron reflections may originate
from factors other than CSROs, e.g., planar defects and higher-
order Laue zones.[5,6] An alternative, reliable, 3D analytic perspec-
tive of CSRO is hence needed to reconcile these controversies, but
also to facilitate the use of CSRO in the materials design.

Atom probe tomography (APT) has long been expected to
probe CSRO in 3D, but recognizing CSRO has been hindered
by its anisotropic spatial resolution and imperfect detection
efficiency.[7] Overcoming these limitations by manual analysis
has proven impossible.[8] Inspired by other machine learning
(ML) methods developed to process complex microscopy and mi-
croanalysis data,[9] and building on our previous efforts,[7c,10] we
introduce a bottom-up approach to quantify in 3D the CSRO do-
mains in APT data from CoCrNi, termed ML-APT, that does not
require any prior knowledge of the CSRO configurations, in con-
trast with previous work[10] (Supporting Information). The over-
all flowchart is presented in Figure S1 (Supporting Information).
ML-APT enables the identification of CSROs as well as the quan-
tification of the number density of ordered domains, their config-
urations, elemental site occupancy, and size/morphology. Monte-
Carlo simulations are then used to rationalize our analyses, facil-
itating an understanding of ordering reactions. We finally show-
case how to establish a direct processing-CSRO-property relation-
ship, paving the way for further material design opportunities.

2. Results and Discussion

2.1. APT Results

An equiatomic CoCrNi alloy was analyzed in two states, first
following the homogenization, and, second, after the homog-
enization and annealing (Methods and Table S2, Support-
ing Information). We performed correlative scanning electron
microscopy-electron backscattered diffraction (EBSD)-focused
ion beam (FIB)-APT to characterize their microstructure in
grains of selected orientation (Figure 1a), i.e., {002} and {111}.
Figure 1b–e details a typical APT analysis from the annealed sam-
ple. Figure 1b is a detector hit map with a pattern corresponding
to the symmetries of {002} crystallographic planes, and Figure 1c
is the 3D atom map reconstructed around this pole. A close-up
in Figure 1d shows resolved {002} atomic planes. The recon-
struction was calibrated to the reported interplanar spacing of
face-centred-cubic (fcc) CoCrNi.[11] Spatial distribution maps[12]

are calculated along the depth (z-SDMs) to exploit these most
highly resolved signals and to evaluate the CSRO. The z-SDM
indicates the characteristic period of each elemental pair along a
specific direction, which is similar to a split pair correlation func-
tion used in, e.g., TEM.[3c] The z-SDMs of different elemental
pairs obtained in a 2-nm voxel are plotted in Figure 1e. The peak-
to-peak distance for each elemental pair is the same, suggesting
a homogenous solid solution. Typical clustering algorithms in
the APT community[8c,13] have been tested but cannot identify
CSROs (Figure 1f,g and Supporting Information). A similar anal-

ysis along {111} planes is provided in Figure S2 (Supporting In-
formation). The spatial resolution for {022} planes is insufficient
to perform subsequent analyses.

2.2. ML-APT Framework

As detailed in Figure 2a for L12-CSRO, for the random solid solu-
tion of fcc-based CoCrNi alloys, the elemental occupation of each
site is equiprobable. CSRO occurs when particular sites have a
higher probability to be occupied by a specific element, e.g. the
face-centered sites are more likely to be Cr/Ni while the edges are
Co atoms. At higher probability, up to close to 100%, CSRO is es-
tablished and can facilitate the nucleation of long-range chemical
order. The corresponding Co-Co z-SDMs along the <002> from
simulated APT data are shown in Figure 2b, and the peaks close
to ±0.18 nm and ±0.54 nm are disappearing with the evolution
of CSRO. Any type of CSRO can be detected, provided that its
signature in the z-SDMs along a particular orientation is clear.
This allows us to recognize different CSRO configurations with-
out any prior knowledge, which is conceptually unlike the pre-
vious up-bottom strategy with prior possible ordered or CSRO
structures.[7c,10]

The ML-APT workflow to reveal CSRO in H/MEA is as follows.
First, we generated artificial APT data along <002> or <111>
containing either a randomly distributed fcc-matrix or CSRO
(Methods). The weak CSRO was not simulated, as the signal to
background ratio of the peaks at ∆Z values such as ±0.18 nm
and ±0.54 nm is typically too low to confidently identify them
experimentally. The FCC and strong CSRO, were labeled as 0
and 1, respectively. Over 10 000 of corresponding z-SDMs pat-
terns are recorded for each orientation (Table S3, Supporting In-
formation). This synthetic data is fed into an optimized 1D con-
volutional neural network (CNN) to obtain an fcc-matrix/CSRO
binary classification model (Figure 2c; Methods and Figure S3a,
Supporting Information). Note that a random forest algorithm
has been tested but its performance is not better than the applied
1DCNN.[10] ML-APT shows excellent performance for both simu-
lated and experimental test datasets (Methods and Figures S3b–d
and S4, Supporting Information). It is further tested on a set of
physically-informed large-scale CoCrNi artificial APT data with
L12-CSRO domains with a diameter of 0.7–2.0 nm (Methods,
Supporting Information), and ML-APT distinguishes these well
(Figure S5 and Supporting Information). The gradient-weighted
class activation mapping,[7c,14] which uses gradients of any tar-
get concept flowing into the final convolutional layer to produce
a coarse localization map highlighting the important regions in
the image for predicting the concept, reveals that ML-APT per-
forms the classification by focusing on the specific peaks of the
z-SDMs that can be used to accurately classify the fcc/CSRO in
both simulated and experimental data (Figure S6, Supporting In-
formation). Finally, experimental z-SDMs were subjected to pre-
processing and then input into ML-APT to obtain 3D CSRO dis-
tributions (Figure 2d; Methods, Supporting Information).

2.3. 3D Perspective of CSRO

Typical examples of 3D distributions of CSRO domains obtained
from ML-APT, applied to Co–Co, Cr–Cr, and Ni–Ni, are presented
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Figure 1. Typical APT data of the equiatomic CoCrNi alloy after annealing at 1273K for 120 h and conventional data analysis to look for CSRO. a) The
EBSD inverse pole figure highlights the grains used for APT experiments. b) Representative 2D detector hit map. One centric {002} crystallographic pole
is labeled. c) Precise 3D APT reconstruction along the <002> orientation. d) Local close-up of a thin slice in (c) along the <002>. e) z-SDMs of different
elemental pairs in a representative 2-nm voxel in (c). Its signature corresponds to the fcc structure and its unit cell is given. Two kinds of conventional
APT analysis approaches: f) frequency distribution analysis of Co, Cr, and Ni atoms compared to the binomial random distributions, and g) k-nearest
neighbor (KNN) distance analysis (k = 1 and 5) of Co-Co, Cr-Cr, and Ni-Ni elemental pairs. Exp and Ran labels correspond to the results obtained by
experimental and random-labeled datasets, respectively.

in Figures 3 and S7 (Supporting Information) along <002> and
<111>, respectively. Cross-species elemental pairs were not an-
alyzed to avoid possible biases arising from differences in evap-
oration fields affecting the spatial resolution[15] and this same-
species information is enough to analyze the CSRO (Support-
ing Information). Figure 3a shows a typical spatial distribution
of these domains with a near-spherical morphology (Figure S8,
Supporting Information). Its z-SDM and that of the remain-
ing fcc matrix data are plotted in Figure S9 (Supporting In-
formation), matching well with those from simulations as out-
lined in Figure 2b. Figure 3b–d shows size distributions of do-
mains in which the Co–Co, Cr–Cr, and Ni–Ni are classified as or-
dered, respectively. The Pearson’s correlation coefficient (PCC)
and contingency coefficient (μ)[16] are used to test the statisti-
cal significance of the difference between these distributions
and a chemically randomized dataset, with μ found more sen-
sitive than PCC to characterize such subtle differences. We de-
fined a threshold to classify the (non-)randomness at 0.25. The
choice of 0.25 is explained in Methods (Supporting Informa-
tion). The Ni-Ni distribution is non-random, with a μ of 0.32,
especially when the domain has more than 35 atoms (<1 nm)

(Figure 3e), while the distribution of the two other elements is
closer to random (μ<0.25). Figure 3d,e demonstrates that these
CSRO domains with sizes below 35 atoms are primarily statis-
tically and randomly formed. Considering the average diame-
ter of one CSRO is generally ≈1 nm, it is reasonable to con-
clude that domains with fewer than 35 atoms are mostly disor-
dered. Figure 3f is an example of the Ni–Ni CSRO domain, and
the corresponding Ni–Ni z-SDM is plotted in Figure 3g, show-
casing an interplanar spacing of Ni atoms is twice as large as
that in the fcc-matrix (Figure 1e) (those of Cr–Cr and Ni–Ni still
keep 0.18 nm as shown in Figure S10, Supporting Information),
which matches the L12/DO22-type structure with the Ni–Ni re-
pulsion on {100} as explained in Figure 4a. Although other crys-
tal structures may also match this repulsion scenario, we use the
most often experimentally observed L12/DO22-type structures.[5b]

For comparisons, along the <111>, the three kinds of CSROs
are all different from the random state with μ ≥ 0.25 (Figure
S7b–d, Supporting Information). This suggests that there is ei-
ther Co/Cr/Ni repulsion on {111}, which matches the L11-type
structure, as detailed in Figure S7e (Supporting Information) and
Figure 4b.
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Figure 2. Proposed ML-APT framework to recognize multi-type CSROs in CoCrNi alloys. a) Unit cells of random-fcc, weak, and strong L12-CSRO.
b) Typical Co-Co z-SDMs along the <002> with the evolution of CSRO after performing APT simulation. c) Schematic diagram of the optimised 1D CNN
structure to obtain a random-fcc/CSRO recognition model. d) Flowchart of processing experimental data to obtain 3D CSRO distribution.

Figure 4c,d provides values of μ for the two studied material
states and orientations. Along {002} planes, the value of μ of
Co–Co or Cr–Cr CSROs remains below 0.25. Non-statistical Ni–
Ni CSRO rises from 0.18 to 0.27 after annealing at 1273K for
120 h, with a number density of 4.81 × 1025 m−3 of CSRO do-
mains with atomic configurations matching the L12/DO22 struc-
tures with the Ni-Ni repulsion on {100} (Figure 4a,e). Note that
the probability for the L10 structure is much lower compared to
that for the L12/DO22 considering only one elemental pair has
an obvious repulsive tendency. Along {111} planes, after the ho-
mogenization, values of μ for Co–Co and Ni-Ni CSRO are close
to or above 0.25, suggesting the existence of L11-domains with
the Co/Ni repulsion on the {111}, with a number density in the
range of 2.98–3.18 × 1025 m−3 (Figure 4b,e). After the annealing,
the values of μ of Co–Co, Cr–Cr, and Ni–Ni pairs are above 0.25,
matching with the L11-type structure with Co–Co/Cr–Cr/Ni–Ni

repulsions on the {111}, with a number density of 4.73 × 1025

m−3, 4.66 × 1025 m−3, and 4.73 × 1025 m−3, as determined from
Co–Co, Cr–Cr, and Ni–Ni pairs, respectively (Figure 4b,e). Only
L11-domains exist after the homogenization, and their number
density increases after the annealing, during which a high density
of L12/DO22-domains appears (Figure 4e,f). Overall, the number
density of CSRO domains is approximately three times after the
annealing compared to that after the homogenization. It should
be pointed out that {111} plane has four rotational variants, i.e.,
{111} (i.e., (1̄11), (111), (11̄1), or (111̄)), and Figure 4e is the anal-
ysis of the given population of CSRO-domains along only one
variant that can be imaged in that particular APT dataset with suf-
ficient resolution to perform the analysis. An additional dataset
obtained along another {111} variant leads to comparable results
(Figure S20 and Supporting Information). One can estimate the
overall number densities by extrapolating the obtained number
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Figure 3. 3D quantitative analysis of CSRO along <002> in the annealed CoCrNi alloy. a) 3D distribution of Ni-Ni CSROs with the mapping of elements.
The front and top views of typical clusters are provided. Different colors mark different CSRO domains. b–d) Size distributions of the identified Co–
Co, Cr–Cr, and Ni–Ni CSROs, respectively. The results from the chemically randomized dataset (Methods, Supporting Information) are compared with
Pearson’s correlation coefficient (PCC) and Pearson contingency coefficient (μ). This CSRO size refers to the APT-counted atoms and the size of 55
atoms ideally corresponds to a 1-nm cube. An upper tail occurring at 155 atoms appears, because we have added all those containing over 155 atoms
into this particular bin. e) Local enlargement of the colored region in (d) which is different from the random curve. f) 3D atom map of a typical Ni-Ni
CSRO domain extracted from (e). g) Its corresponding Ni-Ni z-SDM (Cr–Cr and Co–Co z-SDMs are provided in Figure S10, Supporting Information).

density on one {111} plane and multiplying it by four, enabling a
more accurate quantitative relationship between CSRO and asso-
ciated properties. For example, there are more than 36 additional
CSRO domains within a 103-nm3 volume after the annealing as
compared to that after the homogenization, which will influence
materials’ properties, including for instance the electrical resis-
tivity as discussed below. During the entire process, the CSROs
almost keep the spherical shape (Figure S8, Supporting Informa-
tion) with the size of 20–155 APT-counted atoms (0.7–1.5 nm
in diameter) (Figure 3 and Figure S7, Supporting Information).
Note that these observed domains along {002} and {111} are not
the same ones. A comparison of the compositions between CSRO
domains and raw data suggests that there is no obvious statisti-
cal difference between them, indicating that only the ordering
changed and not the composition (A quantitative explanation is
provided in Supporting Information). Moreover, we compared
the results from laser and voltage pulsing modes (Supporting In-

formation), as shown in Figure S11 (Supporting Information),
which show comparable results, which can be rationalized based
on previous reports of the moderate changes in the depth reso-
lution between voltage and laser pulsing modes.[17] Analysis of
the combined elemental pairs for each individual domain is not
recommended due to the nature of the CSRO, which reflects the
local elemental fluctuation at a very early stage of thermally acti-
vated ordering.

2.4. Electrical Response

The occurrence of CSRO in solid solutions is often associated
with the modifications of physical properties.[8a,b,18] The influ-
ence of CSRO on the mechanical properties of CoCrNi has
been studied widely,[2b,3d,5a,11a] with inconsistent conclusions, but
functional properties have only rarely been investigated. Here,
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Figure 4. 3D atomic-level details of multi-type CSROs in CoCrNi alloys under different heat treatments and arising electrical resistivity change. a) The
L12/DO22-CSRO structure with the Ni–Ni repulsion on {100}. b) The L11-CSRO structure with the A-A or B-B repulsion on {111}. Element A or B
refers to sites that are enriched in Co, Cr, or Ni but cannot be the same simultaneously (an intuitive explanation is given in Figure S7e, Supporting
Information). c,d) Changes of Pearson contingency coefficient (μ) under different heat treatments along <002> and <111>, respectively. The colored
regions highlight the changes of μ after the annealing. Three APT datasets were analyzed to obtain the statistical results for each data point. A value of μ

= 0.25 is regarded as the threshold between CSRO and random states. e) Number-density change (×1025 m−3) of different types of CSROs under heat
treatment. f) Derived CSRO structural evolution from homogenization to annealing. The corresponding CSRO configurations are plotted in (a) and (b).
g) Evolutions of electrical resistivity under different heat treatments.

we measured the electrical resistivity of the two material states
(Methods). The annealing-induced multiple CSROs in CoCrNi
alloys resulted in a 17% rise in the room-temperature electrical
resistivity (Figure 4g), higher than previous reports (+4.8%) in
ref.[5a] which can be explained by the formation of a higher den-
sity of CSRO domains during the furnace cooling compared to
a quench. This reveals a high sensitivity of the electrical resis-
tivity upon changes in the CSRO state, maybe more so than the
mechanical response. This remarkable increase in resistivity im-
plies that the increasing CSRO might lead to a reduced electronic
density of states at the Fermi level, consistent with the previous
density functional theory calculations in the CoCrNi system.[19]

2.5. Monte-Carlo Simulation

ML accelerated ab initio Monte-Carlo (MC) simulations (Meth-
ods, Supporting Information) were performed to predict the

temperature-dependent equilibrium CSROs and associated crys-
talline structures.[20] Calculated temperature-dependent heat ca-
pacities reveal two peaks due to first-order phase transformations
(Figure S12, Supporting Information). One occurs at around
900K, which is confirmed by differential scanning calorimetry
(DSC), and the second occurs at around 225K which is below
the detection limit of DSC due to sluggish diffusion kinetics at
low temperatures. Predicted first NN Warren-Cowley parameters
(Methods) suggested repulsion of Cr–Cr, Co–Ni, Co–Co and at-
tractions of Ni–Ni, Cr–Ni, Co–Cr above the phase transformation
peak, as shown in Figure S13 (Supporting Information). To iden-
tify the possibly locally appearing crystalline ordered clusters in
the CSROs regime, Figure 5a,b visualize the calculated CSRO
diffuse intensity map (𝛼q) (Methods, Supporting Information) in
the (001) and (111) planes, respectively, at 1000K. For the (001),
a (1, 0.5, 0) special point is revealed for Cr–Cr, suggesting, e.g., a
DO22 ordering.[21] Besides, a (001) peak is also presented for the
Ni–Ni and Co–Co pairs: local clusters of L12 or L10 ordering are
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Figure 5. CSROs predicted by Monte-Carlo simulations. a,b) Predicted CSRO diffuse intensity map, 𝜶q, of Co–Co, Cr–Cr, and Ni–Ni pairs at 1000K in
(001) and (111) planes, respectively. The reciprocal space vectors are given in units of 2𝜋/a, where a is the lattice parameter.

suggested for these two. The intensity of L12 or L10 consistent
CSRO peak is strongly enhanced by magnetic effects (Supporting
Information). Further peak analysis in the 3D reciprocal space
found (0.5, 0.5, 0.5) maxima for Cr–Cr and Ni–Ni pairs, which
are also revealed by projecting the calculated 𝛼q in the (111) as
shown in Figure 5b, which would be consistent with local L11
configurations (i.e., ordering along <111>). Compared with APT
measurements (Figure 4), ordering along <002> for Ni–Ni, as
well as ordering along <111> for Cr–Cr and Ni–Ni are confirmed
by MC simulations. For Co–Co pairs, the correlations related to
L11 are less pronounced (Figure S17, Supporting Information).
Previous studies predominantly suggested the presence of L11
and/or L12- CSRO with Cr-Cr repulsion. Here, we conducted fur-
ther investigations by studying an additional CoCrNi sample that
was annealed at 1273K for 120 h followed by quenching, allow-
ing for comparison with previous furnace cooling condition to
address this discrepancy (Supporting Information).

Although the ML-APT enables tomographic imaging of CSRO
in CoCrNi alloys, there are some inherent limitations at the cur-
rent status, as for all experimental techniques. First, high-quality
APT experimental data is needed (see Supporting Information
for how to determine the quality), to maximize the spatial reso-
lutions, to enable more accurate recognition of CSRO patterns.
Enhancing data quality, and maybe even breaking the limitation
for analysis of only specific sets of planes, could arise from better
modeling atom probe tomography[22] to optimize data acquisi-

tion parameters and enable the analysis of the cross-species el-
emental pairs, even if the compositional complexity of the ma-
terial will impose limits in the achievable precision.[7b] More-
over, voxelization (here 1 × 1 × 1 nm3) lowers the accuracy and
may preclude the identification of small CSRO domains. With
higher data quality, the ML-APT could be used with smaller vox-
els. Finally, there could be ways to directly apply other 3D-based
ML techniques to detect CSRO after enhancing the APT data
quality.[23]

3. Conclusion

To conclude, the proposed ML-APT approach enables us to set-
tle previous debates on CSRO in CoCrNi alloys, and evidence
atomic-scale details of CSRO beyond the state-of-the-art. It si-
multaneously resolves CSRO at both the individual-domain and
overall (statistical) levels. In comparison to other approaches
for CSRO characterization, our proposed ML-APT analysis only
relies on the measured APT mass spectra and is hence inde-
pendent of interatomic potentials needed to interpret CSRO
from X-ray/neutron techniques.[4] Moreover, ML-APT provides
3D elemental-specific information and is hence capable of iden-
tifying multiple types of CSRO (Figures 3 and 4). The observed
CSRO configurations were rationalized herein by Monte-Carlo
simulations. The electrical response could be a better indicator
of CSROs than mechanical properties. The individual influence
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of CSRO on the mechanical properties is seemly limited at room
temperature, whereas, the co-existing CSRO and medium-range
order could be a better approach to designing new H/MEAs with
better (cryogenic) mechanical properties via adjusting the pro-
cessing parameters (e.g., thermal history[24] and deformation)[25]

or microalloying (e.g., adding Ti or Al).[26] Our method can be
generally used for other H/MEAs as well as for complex engi-
neering materials.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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Methods 
Materials preparations 

The equiatomic CoCrNi was argon-arc melted from pieces of raw metals with high purity (>99.9 

wt.%) in a water-chilled copper crucible. Then, the as-cast samples were divided into two pieces 

and sealed into Ar-atmosphere quartz capsules to avoid oxidation. One was homogenised at 1473K 

for 48h followed by water quenching, and the other was homogenised at 1473K for 48h and then 

annealed at 1273K for 120h followed by furnace cooling to room temperature. 

 

Atom probe tomography (APT) experiments 

The site-specific preparation procedure used for APT needle-like specimens was performed via 

the correlative electron backscattered diffraction (EBSD) and FEI Helios focused ion beam (FIB) 

with a Xenon plasma ion source. The APT measurements were performed on a CAMECA Inc. 

LEAP 5000XR in the laser pulsing mode at 50-60K, 0.7% detection rate, 20pJ laser energy, and 

200 kHz pulse rate. Three APT datasets were collected to obtain statistical results for each state. 

To survey the effect of running parameters, we made four additional APT datasets in the voltage 

pulsing mode at 70K, 0.5% detection rate, 20% pulse fraction, and 200 kHz pulse rate. APT 

reconstruction and initial analysis were performed using AP Suite 6.1 and reconstructions were 

calibrated using the procedure described in Refs. [1]. The mass spectrum of typical APT data is 

shown in Figure S14. The average composition of specimens measured by APT is close to 

equiatomic Co31Cr31Ni31 with minor impurities (Table S2). Note that there is no clustering of these 

impurities, especially O, C, and H atoms. The potential effect of hydrogen-containing molecular 

ions in the CoCrNi system was excluded due to their limited amounts (Supplementary Text). Due 

to the descending quality of z-SDMs along the radial direction, a 10-nm radius clipping around a 

specific pole is applied for all APT datasets. 

 

ML-APT workflow 

Different from our previous work with prior possible ordered or CSRO structures [2], due to the 

prior-unknown CSRO configuration in CoCrNi, we generated simulated CSRO z-SDM patterns 

along different directions to infer CSRO motifs. The periodicity or peak distance of z-SDMs are 

changed, respectively, when CSRO occurs or different analysis directions are applied (Figure S15).  

 

As shown in Figure 2b, for generating simulated matrix and CSRO patterns along 〈100〉, two 

supercells with the size of 1×1×1 nm3 (the lattice parameter is 0.36nm) are firstly generated, 

around fcc and L12. Note that the change in the composition of each fcc cell has a minor effect on 

the simulated z-SDMs. There is limited compositional fluctuation in the experimental data and the 

domains with concentrations below 5 at.% account for 1–2% only, as shown in Figure S19, and 

even then the SDMs retain sufficient information. Then, atoms are shifted from their theoretical 

sites in x, y, and z directions according to Gaussian functions to simulate the anisotropic spatial 

resolutions met in APT, followed by randomly discarding certain fractions of atoms to mimic the 

imperfect detection efficiency. Finally, the corresponding 1D z-SDMs along 〈100〉 are generated, 

as exampled in Figure S15. The peak positions of the experimental z-SDMs are not always at 

theoretical sites due to the trajectory aberration. Hence, we augmented the dataset by adding 

additional 5200 synthetic data in which the peak-to-peak distance was randomly modified by ±0.03 

nm. All parameters for generating simulated z-SDMs are listed in Table S3. For the matrix and 
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CSRO patterns along 〈111〉, the same procedure is performed for the z-SDMs of fcc and L12 

structure but with the lattice parameter of 0.41nm, and an example is presented in Figure S15. The 

two sets of synthetic z-SDMs banks (over 20000 curves) are used to train the following CNN to 

generate the corresponding CSRO recognition models. 

 

The detailed structure of used CNN is described in Figure S3a. The uncertainty is calculated by 5 

models from 5-fold cross-validation. The obtained model exhibits almost 100% training, validation, 

and test accuracies on the synthetic data (Figure S3b-d). The model was further tested using 88 

pre-processed experimental z-SDMs for each type of CSRO. The procedure of experimental data 

pre-processing involves smoothing the raw z-SDMs and background reduction [2b]. The 

classification is evaluated by the area under the curve (AUC) of the receiver operating 

characteristic curve (ROC) [3]. The CNN exhibits high AUC values and low uncertainties after data 

augmentation, i.e., 0.98±0.01, 0.94±0.01, 0.96±0.00 for Co-Co, Cr-Cr, and Ni-Ni CSRO, 

respectively (Figure S4). These scores suggest that the obtained CNN can successfully classify 

experimental data. The CNN was implemented using the Keras 2.2.4 with the TensorFlow 1.13.1 

backend on Python 3.7. Note that the reported hyperparameters' values in Figure S3a are the result 

of a thorough tuning procedure based on the training, validation, and test results on synthetic and 

real datasets (like the tested convolutional layer number: 1~3; filter number: 8~64; kernel size: 5-

15, neurons of full layer: 32~500; learning rate: 0.001~0.1). A dropout layer with a rate of 0.5 was 

used to avoid overfitting as shown in Figure S3b-d. The quick model converge performance shown 

in Figure S3b is mainly due to the rather simple 1D signal of z-SDMs.  

 

We further tested ML-APT using large-scale CoCrNi APT artificial data as ground truth. This 

large-scale dataset can incorporate important factors related to field evaporation physics by 

extracting crucial features from previous physics-based simulation [4].  The Co(CrNi)3-L12 

domains, with a diameter ranging from 0.7 to 2.0 nm, are embedded into a CoCrNi-fcc matrix. The 

shifting distance of atoms in the lateral reconstruction direction is set as with the maximum of 5th 

nearest neighbour distance, while that in the depth reconstruction direction was tuned to mimic the 

trend in Figure S18 a. The standard deviation of the Gaussian function applied to shift atoms in 

the depth reconstruction direction is 0.07, which closely resembles the previous physics-based 

simulation [4]. Then 48% of atoms are discarded. The final simulated L12 domains are shown in 

Figure S5a. Different voxelization strategies (using the 2×2×2, 1×1×1, or 0.5×0.5×0.5nm3 voxel 

with a 1, 0.5, or 0.25nm stride) are tested, and finally, the one using a 1×1×1nm3 voxel with a 

0.5nm stride was adopted considering the good balance between recognising accuracy and 

computing efficiency. Even in a truly random yet concentrated solid solution, some local 

environments similar to CSRO randomly form, with no specific ordering driving force. Thus, a 

chemically-randomised dataset was built to make comparisons by fastening the raw x, y, and z 

sites but randomly shuffling the species of elements. 

 

Next, APT data is voxelised into millions of 1-nm cubes with a 0.5nm stride that are further 

transformed into z-SDMs via a Python-based parallel program. These experimental curves are 

made pre-processing and then fed into the obtained CNN model to derive the 3D distribution of 

CSRO. A threshold of 3.75 is reasonably for separating the FCC and CSRO (see Figure S18).  

Note that this CNN model generally classifies messy z-SDM patterns into fcc to avoid bias from 
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low-quality signals. The density-based spatial clustering of applications with noise (DBSCAN) 

algorithm [5] is applied to make a clustering analysis. The same hyperparameters are applied to all 

experimental datasets after careful tuning. The morphology of CSRO is described following the 

plot of the oblateness versus aspect ratio [6]. The results essentially reflect the spatial distribution 

of CSRO domains, as in Figure S5b, yet these inevitably include some randomly-occurring small 

CSRO domains. These domains would appear notwithstanding the method used to characterise 

CSRO, and for TEM-based methods, they would combine with additional factors (planar defects, 

surface oxides, and higher-order Laue zones) to generate backgrounds that can make it more 

challenging to identify CSRO [7]. 

 

To understand where the CNN model is focusing, we applied the gradient-weighted class 

activation mapping [2a, 8]. Its output is a heat map for a given class label and the results are shown 

in Figure S6. 

 

Determination of the threshold of 0.25 to classify (non-)randomness 

First, we created multiple chemically-randomised datasets from experiments performed along 

different poles, using the method outlined in Stephenson et al. [9]. We then compared these 

chemically-randomised datasets from the same experimental data to obtain the µ. After analysing 

nine groups of randomised distributions, an average µ value of 0.22 with a standard deviation of 

0.035 was obtained. We chose 0.25, the upper limit, as a baseline for these randomised 

distributions in experimental data. Above 0.25 suggests the occurrence of CSRO in this system. 

 

Electrical resistivity measurement 

The room-temperature electrical resistivity of each heat treatment state was obtained by the four-

probe resistance measurement using a KEITHLEY 4200-SCS device. Five specimens for each 

state were measured to calculate the statistical results. 

 

Specific heat capacity measurement via differential scanning calorimetry (DSC) 

We measured the constant-pressure specific heat capacity (𝑐p ) from 313 to 1073 K using a 

NETZSCH 404C DSC, following the ASTM E1269 using a sapphire standard. The homogenised 

CoCrNi sample was heated under an argon atmosphere at a constant heating rate of 10 K/min. The 

sample experienced a full heating-cooling cycle before measurement to rule out the exothermic 

reactions due to non-equilibrium cooling during the quenching process [10]. Two independent 

experiments were performed and the error of specific heat capacity of 5% was estimated. 

 

Monte-Carlo simulation 

Density functional theory (DFT) calculations: Non-spin-polarised DFT calculations were 

performed using the projector augmented wave (PAW) method [11] as implemented in the Vienna 

ab initio Simulation Package (VASP) [12]. The provided PAW potentials [13] were employed, 

treating the 3𝑝63𝑑84𝑠1, 3𝑝63𝑑54𝑠1, and 3𝑝63𝑑94𝑠1 orbitals as valence electrons for Co, Cr, and 

Ni, respectively. The generalised gradient approximation (GGA) with Perdew-Burke-Ernzerhof 

(PBE) [14] parameterisation was utilised for the exchange-correlation function. The calculations 

were performed using a 500eV kinetic-energy cutoff and a 6×6×6 k-point mesh (corresponding to 

11,232 kp·atom) according to the Monkhorst-Pack scheme [15]. Structural relaxations of atomic 
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positions at a fixed volume (at lattice parameter 𝑎 = 3.61Å, corresponding to measurement at 

1100K by neutron diffractions [10]) with total energy convergence of 2×10−3 meV/atom was 

employed. We used 3×3×3 CoCrNi supercells with 108 atoms, which allows for an equiatomic 

composition. To analyse the impact of magnetism, spin-polarised calculations (see Supplementary 

Text) have been utilised with similar parameters, see also [16].  

 

Machine-learning inter-atomic potential: An on-lattice machine-learning inter-atomic potential, 

called low-rank potential (LRP, after [17]) is fitted to describe the total energy for a given 

distribution of chemical elements on the fcc lattice. The central idea of this type of potential is to 

formulate the energy contributed by each atom at a specific lattice site, by its environmental atoms 

at neighbouring lattice sites (within a certain radius cut-off) which is parameterised by a high-

dimensional tensor Α ∈ 𝐑𝑀1×𝑀2×···×𝑀𝑁+1  (where 𝑀 is the number of chemical components, e.g. 3 

for CoCrNi; 𝑁 the number of neighbours to be considered, e.g. 𝑁 = 12 for first nearest neighbours 

(NNs) of an fcc crystal lattice); it turns out that the high-dimensional tensor can be well 

approximated by low-rank representations by the tensor-train decomposition following [17-18]. This 

significantly reduces the number of hyperparameters needed to describe the local atomic 

environment energy surface while retaining high accuracy. Detailed formulations can be found in 

Refs. [17-18]. The mathematical procedure yields significantly higher accuracy over the traditionally 

used cluster expansion (CE) approach when training on density functional theory (DFT) 

calculations of a defined alloy composition [17]. Atomic relaxation effects (stress relaxations) can 

be accounted for within the formalism. Figure S16 shows training and validation errors compared 

with DFT calculations (after stress relaxation) for CoCrNi equiatomic composition. Rank-8 shows 

the optimum accuracy with residual mean square error (RMSE) below 1meV/atom. 

 

Monte-Carlo samplings: Coupled with trained LRP potentials, we performed Metropolis Monte-

Carlo (MC) simulations in the canonical ensemble (NVT). The fcc supercell with a size of 

12×12×12 (6912 atoms) was initialised with random occupation of Co/Cr/Ni atoms. We annealed 

the simulations box at each target temperature, with heat capacity convergence criteria of 10-6 

𝑘B/atom. After convergence, MC sampling of the same number of steps allows for statistically 

highly converged CSRO and prediction of heat capacity. The CSRO is described here by using the 

Warren-Cowley SRO parameters, 𝛼𝑖𝑗
𝑟 ,  as 

 
𝛼𝑖𝑗
𝑟 = 1 −

𝑝𝑖𝑗
𝑟

𝑐𝑖𝑐𝑗
 

(1) 

where 𝑐 denotes the nominal composition; the pair probability (𝑝) of chemical elements 𝑖, 𝑗 at each 

𝑟-NN shell can be directly calculated by the MC sampling. Up to 20th NNs pair correlation 

parameters 𝛼𝑖𝑗
𝑟  are calculated. 

 

Crystal structural identification of CSROs: To identify the crystal structure predicted for CSROs, 

calculated 𝛼𝑖𝑗
𝑟  (for each elemental pair, at each temperature) are projected to the reciprocal space 

following the static concentration wave method [19], consistent with 

 𝛼(𝐪)𝑖𝑗 =∑∑𝛼𝑖𝑗
𝑘 𝑒−𝑖𝐪𝐑𝒌

𝑘∈𝑟𝑟

 
(2) 
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where 𝛼𝑖𝑗
𝑘  defined for each lattice site k at 𝑟-NN shell (referenced to defined lattice site) with real 

space position. 𝐑𝒌 is Fourier transformed to the reciprocal (𝐪) space. Projections are done either 

in 2D for visualisations, or in 3D for peak identifications where locations of each local 

minima/maxima of 𝛼𝐪 are analysed (see Supplementary Text for the analysis of 𝛼(𝐪)𝑖𝑗 along high 

symmetry paths in the first Brillouin zone). 

 

Statistical analysis for experimental data  

Three APT datasets with the volume of 20×20×100 nm3 at least were often analysed to obtain the 

statistical results for each data point in all crucial findings. The mean and standard deviation values 

were provided. The Pearson’s correlation coefficient and contingency coefficient (µ) were used to 

test the statistical significance of the difference between experimental distributions and a 

chemically-randomised dataset, as like in Figure 3.   
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Supplementary Figures 

 

Figure S1 ML-APT overview. We developed a framework for deciphering the details of multi-

type CSROs in H/MEAs, which combines ML, APT experiments/simulations, Monte-Carlo 

simulations, and electrical measurements. (a) First, a series of site-specific APT experiments are 

performed to collect the desired data, which are voxelised into millions of 1-nm cubes that are 

transformed into z-SDMs. (b) Then, a CSRO recognition model is obtained by utilising the 

simulated CSRO pattern bank to train a neural network. Its reliability is verified by a large-scale 

APT simulation. (c) Third, the pre-processed experimental z-SDMs are fed into the CSRO 

recognition model to obtain the 3D CSRO distribution. The details of multiple-CSROs are revealed, 

supported by atomistic simulations. (d) Finally, the composition/processing-CSRO-electrical 

resistivity relationships are built. 
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Figure S2 APT data of a typical equiatomic CoCrNi alloy along 〈111〉. (a) Representative 2D 

detector hit map. One centric {111} crystallographic pole is highlighted. (b) Precise 3D APT 

reconstruction along the 〈111〉 orientation. (c) Local close-up of a thin slice in (b) along 〈111〉. (d) 

z-SDMs of different elemental pairs in a representative 2-nm voxel in (b). The peak distance is 

about 0.2nm, matching well with the theoretical {111} plane distance of the CoCrNi fcc structure.  

  



 

 

 

9 

 

 

 

 

Figure S3 Details of the optimised 1D CNN structure and the training, validation, and test 

results using the synthetic data. (a) The 1D CNN configuration. (b), (c) The evolutions of the 

training and validation losses and accuracies. The quick converge performance is mainly due to 

the simple 1D signal of z-SDMs. (d) The confusion matrix of the test results using the 10% 

simulated data. 
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Figure S4 ROC analysis of the 1D CNN obtained using 88 experimental z-SDMs for each 

type of CSRO. (a), (b), (c) ROC curves of Co-Co, Cr-Cr, and Ni-Ni CSROs with uncertainties, 

respectively, with peak shift data augmentation (Table S3); (d), (e), (f) ROC curves of Co-Co, Cr-

Cr, and Ni-Ni CSROs with uncertainties, respectively, without peak shift data augmentation. For 

each label, we plot its ROC curve regarding each element of the label indicator matrix as a binary 

prediction. Five models from five-fold cross-validation provide five ROC curves for each class, 

and the mean value and standard deviation are plotted. The mean AUC and its standard deviation 

of each class are also provided. After data augmentation, the performance of the model is enhanced.  
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Figure S5 Test of ML-APT in large-scale APT simulation with L12-CSRO domains which 

simulates the experimental depth resolution distribution in Figure S18a. (a) Front and top 

views of simulated Co(CrNi)3-L12  CSRO APT data with a diameter ranging from 0.7 to 2.0 nm. 

Matrix atoms are hidden for a better visualisation and a unit cell of Co(CrNi)3-L12  is given. (b), 

(c) Front and top views of recognised CSRO domains in simulated data and chemically-

randomised data, respectively, via the proposed recognition model using 1×1× 1nm3 scanning 

cubes with a 0.5nm stride. The two recognised results are named “1×1× 1” and “Random data”. 

(d), (e) Distributions of atom counts along Z and Y directions in “1×1× 1” and “Random data”, 

respectively. The relevant Pearson’s correlation coefficient (PCC) values are given. (f) 

Morphology maps of the simulated CSRO domains in (a) and detected ones in “1×1× 1” (b). The 

size and colour of one circle denote the number of atoms within one domain. (g) Number densities 

versus CSRO size range corresponding to simulated, “1×1× 1”, and “Random data”. The size 

refers to the APT-counted atoms and the PCC values are listed in the inserted table. The µ used in 

Figure 3 cannot be adopted here due to the rather discretized size of simulated data which leads to 

massive zeros in the size distribution plot. 
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Figure S6 Visualisation of the obtained CNN model on two classes of z-SDMs via gradient-

weighted class activation mapping. (a) fcc and (b) CSRO from simulated (left) and experimental 

(right) data. The more red, the more attention. For the former, the model is looking at whether 

there are peaks at the zones close to the ∆Z with ±0.18 and ±0.54nm. For the latter, the model 

focuses on the zones close to the ∆Z with 0, ±0.36nm. 
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Figure S7 Quantitative 3D analysis of CSRO along <111> in the annealing CoCrNi alloy. (a) 

3D distribution of Co-Co CSRO. (b), (c), (d) Size distributions of the identified Co-Co, Cr-Cr, and 

Ni-Ni CSROs, respectively. The results from the chemically-randomised dataset are compared 

with the PCC and Pearson contingency coefficient (µ). The coloured regions highlight the size 

ranges different from the random curves. (e) A schematic diagram of Co-Co L11-type CSRO. The 

Co-Co plane spacing is 0.4 nm, while the Cr/Ni-Cr/Ni plane spacing can be either 0.2 or 0.4 nm 

depending on the concentration of Cr/Ni in the A plane. For example, when A plane consists of 

Co60(Cr, Ni)40 and B is Co10(Cr, Ni)90, the Co-Co spacing is approximately 0.4 nm while Cr/Ni is 

approximately 0.2 nm. When A plane consists of Co90(Cr, Ni)10 and B is Co10(Cr, Ni)90, all the 

Co-Co, Cr-Cr, and Ni-Ni spacing are 0.4 nm. 
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Figure S8 Morphology analysis of different CSROs along <002> in the annealing CoCrNi 

alloy. (a) Co-Co CSROs. (b) Cr-Cr CSROs. (c) Ni-Ni CSROs. The colour and radius of each circle 

denote the number of atoms within one domain. 
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Figure S9 Ni-Ni z-SDMs of Ni-Ni CSRO in Figure 3a and the remaining fcc matrix. A periodic 

peak occurrence each about 0.36 nm can be observed in the Ni-Ni CSROs. 
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Figure S10 Corresponding z-SDMs of Co-Co, Cr-Cr, and Ni-Ni from the same region as 

Figure 3g. The z-SDM of Ni-Ni has a spacing of 0.36nm, while the other two elements have a 

spacing of 0.18nm. 
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Figure S11 APT data using the voltage-pulsing mode (Methods) and its comparison with the 

laser-pulsing mode. (a) APT data of a typical equiatomic CoCrNi alloy along 〈002〉 using the 

voltage-pulsing mode. A local close-up of a thin slice along 〈002〉 is shown. (b) Changes of µ 

under different heat treatments and pulsing modes along <002>. 
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Figure S12 Specific heat capacities (𝒄𝐩) measured by DSC and predicted by MC as well as 

CSROs predicted by MC (without spin polarisation). (a) and (b) Ni2Cr-type structures predicted 

below around 225K and 900K, respectively. (c) Predicted CSROs at 1000K suggesting 

combinations of L11, L12 and DO22 types of local chemical orders. (d) and (e) Predicted CSRO 

diffuse intensity map, 𝛼𝐪, of Co-Co, Cr-Cr and Ni-Ni pairs at 100K and 600K (corresponding to 

structure (a) and (b) respectively) in (001) and (111) planes, respectively. The high intensity of 

several characteristic peaks at 100K and 600K suggests the tendency of long-range ordering at low 

temperatures. Reciprocal space vectors are given in units of 2π/𝑎. Note that no lattice vibrations 

or electronic excitations have been included in present simulations, which can explain the 

discrepancies of quantitative heat capacities between predictions and measurements. Nevertheless, 

the influence of phonons on predicted phase transformation temperature and CSRO structure is 

not significant for the CoCrNi system [20], if no point defect (e.g. vacancies) is considered. 
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Figure S13 Temperature-dependent 1st NN Warren-Cowley parameter predicted by MC 

simulations (without spin polarisation). The repulsion of Cr-Cr, Co-Ni, Co-Co and attractions 

of Ni-Ni, Cr-Ni, Co-Cr above 900K can be observed. Note that these tendencies consider all 1st 

NNs, i.e. 360o, not that along one specific direction. 

 

 

  



 

 

 

21 

 

 

 

 

Figure S14 Typical CoCrNi APT mass spectrum.  
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Figure S15 Typical z-SDMs of fcc-matrix and CSRO along different directions. (a) z-SDMs 

of fcc and (b) CSRO along <100> and <111>, respectively. 
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Figure S16 Training and validation error of LRP compared with DFT calculations (without 

spin polarisation). 20 independent fittings were done for each rank; the best 10 of each were 

selected for Monte-Carlo samplings which give the standard deviation of predicted 𝛼 and 𝑐p.  
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Figure S17 Influence of magnetism on predicted CSRO structure. Projection of predicted 𝛼𝐪 

along high-symmetry paths in the first Brillouin zone, (a) with and (b) without magnetic effects. 

The inclusion of magnetism significantly increases the CSRO with a pronounced Cr-Cr repulsion 

at the X-point indicating a tendency for L12/L10 instability. In both cases (a) and (b), the tendency 

for L11 CSRO (peaks at L-point) is observed for all same-species elemental pairs. A minimum at 

the W-point (correlated to DO22 ordering) is slightly enhanced without spin-polarisation.  
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Figure S18 Predicted results of the Co-Co CSROs along <002> corresponding to 

experimental and large-scale simulated datasets (Similar trends apply to Cr-Cr and Ni-Ni). 

(a) Frequency distribution of predicted CSRO probabilities of the 0.5-nm voxels from 

experimental data in Figure 3b. A large-scale simulation was made to mimic the distribution in 

Figure S5. (b) The z-SDMs generated from the data corresponding to zones in (a). A threshold of 

3.75 was reasonably used in this work to separate fcc and CSRO due to the obvious CSRO 

signatures above 3.75.   
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Figure S19 Compositional distributions (Co, Cr, Ni) of recognised Ni-Ni CSROs domains 

from Figure 3a. The distributions from original data are superimposed for comparisons. The 

fitting results (mean and variance) using the LogNormal distribution are listed. 
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Figure S20 Comparison between two groups of APT data analysis collected from two {111} 

grains. (a) Changes of Pearson contingency coefficient (µ) under different heat treatments on two 

{111}. The coloured regions highlight the changes of µ after the annealing. A value of µ=0.25 is 

regarded as the threshold between CSRO and random states. (b) Number-density change (×1025 

m−3) of different types of CSROs under heat treatment and different {111}. 

  



 

 

 

28 

 

 

 

 
Figure S21 Comparison of the type and degree of CSRO in different annealing samples. (a) 

and (b) Changes of Pearson contingency coefficient (µ) under two annealing states along <002> 

and <111>, respectively. The coloured regions highlight the changes of µ after the annealing 

followed by quenching. Three APT datasets were analysed to obtain the statistical results for each 

data point. A value of µ=0.25 is regarded as the threshold between CSRO and random states. The 

same experimental parameters are applied. 
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Figure S22 Estimation of in-depth resolution. (a) The annular zone around the {002} pole with 

the inner (R1) and outer (R2) radius are scanned to generate experimental z-SDMs. (b-f) z-SDMs 

corresponding to different annular zones 0-2, 2-4, 4-6, 6-8, and 8-10 nm, respectively. A Gaussian 

function has been fitted to the central peaks of these z-SDMs to calculate the sigma (σ) value, 

enabling the measurement of the resolution. (g) The result from the 10-nm radius zone. 
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Supplementary Tables 

Table S1 Summary of reported CSROs in CoCrNi alloys. 

Authors Heat treatment CSRO configuration Method 

Zhang et al. [21] 

Homogenisation at 1473K for 48h, 

quenching 
No diffuse streak 

TEM-based method 

Annealing at 1273K for 120h, furnace 

cooling 
Diffuse streaks 

Zhou et al. [22] 
Annealing at 873K and 1273 K for 1 

h, quenching 
L11-like (Cr/CoNi {113}) 

Zhang et al. [23] 1073-1273K for 240h, quenching L11-like 

Hsiao et al. [24] 

Homogenisation at 1473K for 48h, 

quenching 
L11-like (Cr/CoNi {111}) 

Annealing at 1273K for 120h, furnace 

cooling 

L11-like (Cr/CoNi {111}) and L12-

like (Cr-Cr repulsion on {100}) 

Li et al. [7a] 

Homogenisation at 1473K for 168h, 

quenching 
TEM artefacts possibly from thin 

film effects, surface steps, or planar 

defects, etc., rather than CSRO 
Annealing at 773K for 168h, 

quenching 

Walsh et al. [7b] - 
TEM artefacts possibly from planar 

defects, rather than CSRO 

Coury et al. [7c]   - 
TEM artefacts possibly from higher-

order Laue zones, rather than CSRO 

Inoue et al. [25] 

Homogenisation at 1373K for 24h, 

quenching 
No CSRO 

Qualitative APT 

analysis Annealing at 973K for 384h, 

quenching 

L12-like (Co/Ni-Co/Ni repulsion on 

{100}) 

Walsh et al. [26] and 

Zhang et al. [27] 
- Co–Cr and Cr-Cr repulsion DFT 

Tamm et al. [28] ≥800K Ni–Cr attraction and Cr-Cr repulsion DFT + MC 

Ghosh et al. [16] ≥900K 
(Co,Ni)–Cr attraction and Cr-Cr 

repulsion 
DFT + ML-MC 

Du et al. [29] ≥800K 

L10-like (Cr/CoNi {100}), L11-like 

(Cr/CoNi {113}), and Cr/CoNi 

{110} 

DFT-ML + MC-MD 

Zhang et al.[27] As-cast Cr-Cr repulsion 

Extended X-ray 

absorption fine 

structure (EXAFS) 
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Hsiao et al. [25] and 

Zhang et al. [27] 
See above inconclusive Neutron scattering 

This work 

Homogenisation at 1473K for 48h, 

quenching 

L11-like CSROs (Co/Ni repulsion on 

{111}) 

ML-APT 
Annealing at 1273K for 120h, furnace 

cooling 

L12/DO22-like (Ni repulsion on 

{100}) and L11-like (Co/Cr/Ni 

repulsion on {111}) CSROs 
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Table S2 Bulk compositions of CoCrNi APT data from three datasets. 

Element Content, at.% 

Co 31.47±1.16 

Cr 31.27±3.00 

Ni 31.02±0.66 

H 5.20±1.89 

O 0.05±0.03 

Si 0.05±0.03 

Fe 0.09±0.01 

Ti 0.25±0.12 

He 0.47±0.20 

C 0.12±0.07 

Note that H atoms mainly come from the chamber and their spatial distribution is uniform. 
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Table S3 Parameters for building the synthetic z-SDMs bank. Note that σ represents the 

standard deviation of the Gaussian function applied to shift atoms in x, y, z reconstruction 

directions to simulate the anisotropic spatial resolutions (depth resolution is better than the lateral 

direction). Using Larger σz will generate messier z-SDMs, which is meaningless for training the 

ML model. 

Category Number of z-SDMs σx = σy, nm σz, nm Detect efficiency Peak shift, nm 

fcc 6500 0.2~0.8 0.01~0.06 0.2~0.7 -0.03~0.03 

CSRO 3900 0.2~0.8 0.02~0.05 0.2~0.7 -0.03~0.03 
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Table S4 Comparisons of isotope ratios of Ni+ between experimental values and natural 

abundance. 

Isotope mass 

number 

Natural abundance 

(atom %) 

Ni+ isotopes from 

experiments (atom %) 

58 68.08 66.18 

60 26.22 25.77 

30 1.14 2.68 

62 3.64 3.87 

64 0.92 1.50 
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Supplementary Text 
Comparisons between the previous report in Table S1 and our work 

Our present work essentially settles previous debates on whether CSRO is present in CoCrNi 

alloys. First, CSROs indeed exist even after the homogenisation but with a number density of 2.46 

×1026 m−3 (6.16×1025 multiplied by 4). Our specimen condition is similar to those of Zhang et al. 
[21] and Hsiao et al. [24]. Zhang et al. [21] did not find CSRO in the homogenised state by energy-

filtered TEM, while Hsiao et al. [24] reported L11-ordered nanoclusters (Cr repulsion) with a 

diameter of approx. 6 nm via energy-filtered scanning-electron nanodiffraction. Our APT results 

suggest the existence of L11-CSROs but with Co or Ni repulsion after the homogenisation (Figure 

4e). The average size of L11-CSROs is only approximately 1 nm (see Figure S7), which is much 

smaller than that from Hsiao et al. [24]. Moreover, previous TEM work mainly revealed the 

existence of L11-CSROs (Cr repulsion) in the annealed state [7a, 22-23], while we observe various 

kinds of L11 (Co or Cr or Ni repulsion) and L12/DO22 (Ni repulsion) CSROs in the annealing 

sample followed by furnace cooling. 

 

To solve this debate, we studied an additional CoCrNi sample that was annealed at 1273K for 120h 

followed by quenching, for comparison with the furnace cooled condition. As shown in Figure 

S21, we can now mainly observe the Cr-Cr repulsion along the <111> or 360° after quenching. 

Compared to the previous furnace cooling state, the quenching state more accurately reflects the 

high-temperature condition, making it more consistent with previous reports and our simulations. 

Additionally, this suggests that adjusting heat treatment parameters can indeed modulate the type 

and degree of CSRO. The weaker CSRO tendency observed in the quenching state compared to 

the furnace cooling state is reasonable, considering the latter involves more kinetic factors. He et 

al. [30] recently developed an approach to measure CSRO using APT in a CoCrNi sample that was 

annealed at 773K for 500 hours followed by quenching. This method balances the limitations of 

APT with the threshold values of CSRO to map the regimes where the required atomistic 

neighbourhood information is preserved and where it is not. However, Cr-Cr pairs were found to 

cluster, which have not been reported in Extended Data Table 1 or our work. These findings need 

to be verified using different methods in the future. 

 

Note that these CSRO clusters should not be regarded as a stable phase in the sense of 

thermodynamic equilibrium, i.e., the alloy is still in a single-phase regime thermodynamically. The 

CSRO clusters are in fact local elemental fluctuations within a single phase. The L12-CSRO with 

the Ni repulsion is consistent with the qualitative APT analysis results from Inoue et al. [25]. 

 

Novelty and significance of current ML-APT work 

(1) Advance of the current approach for complex concentrated alloys 

 

First, it is important to note that the challenges posed by the complex concentrated CoCrNi alloy 

and other M/HEAs are inherently different from the binary Fe-Al alloy. The previously proposed 

method developed to analyse CSRO in Fe-Al [2b] requires prior knowledge of the possible CSRO 

configurations, like D03 and B2-like structures. For the CoCrNi, or other M/HEAs, the potential 

CSRO configurations are unknown in advance. While hypothetical estimations could be made, the 

possible elemental occupancy combinations can be daunting due to the high number of 

combinations; for instance, the L12 structure in the CoCrNi system alone has 8 combinations. In 

comparison, the newly developed method that we demonstrate on CoCrNi does not require any 



 

 

 

36 

 

 

 

prior knowledge of the CSRO configurations. Those possible CSRO configurations are deduced 

after obtaining all information from pairs of the same species. This allowed us to derive the 

multiple CSRO configurations in CoCrNi, through analyses of over 15 successful datasets, 

obtained along different crystallographic orientations. 

 

Furthermore, this new approach is more versatile – it can be readily applied to the Fe-Al system, 

while the method developed for the Fe-Al cannot be applied to the CoCrNi due to the prior-

unknown CSRO configurations. Here, we also demonstrated its application to CoCrNi, as well as 

the VCoNi system –which compares well with the literature. Many other possible systems could 

be investigated in the future, including FeMnAlC (L12-CSRO in fcc), five- or six-component 

Cantor alloys (L12-CSRO in fcc), and semiconducting [31] and thermoelectric materials [32], 

amongst others. The potential ramifications of this work, spanning material design to simulations, 

signify its sweeping influence. 

 

(2) Beyond methodological progress, the more important aspect lies in addressing the hotly 

debated CSRO in CoCrNi alloys in 3D with quantitative data. 

 

First, with the help of the proposed approach, it is the first time that the CSRO in CoCrNi alloys 

has been accurately and quantitatively imaged experimentally in 3D. This work confirms previous 

theoretical and experimental reports, such as the existence of CSRO in CoCrNi, but goes beyond 

them by identifying several types of CSRO (not only L11-CSRO but also L12-CSRO with different 

elemental occupations), some of which have not been observed experimentally in TEM-based 

methods (like L11 (Co or Ni repulsion) and L12/DO22 (Ni repulsion) CSROs in the annealing 

sample followed by furnace cooling). 

 

Moreover, comparing the annealing samples with different cooling rates (furnace cooling or 

quenching), we concluded that adjusting processing parameters, such as thermal history, can be 

leveraged to manipulate CSRO and consequently design novel H/MEAs with enhanced properties. 

These quantitative results corresponding to each state have not been reported in CoCrNi alloys 

previously. 

 

Last, the obtained fruitful 3D quantitative information of multiple CSROs, such as the number 

density of ordered domains, their configurations, elemental site occupancy, and size/morphology, 

is very beneficial for establishing a direct processing-CSRO-property relationship, which was not 

available before our work. 

 

Typical clustering algorithms in APT to look for CSRO 

The typical clustering algorithms in APT are based on the difference between experimental and 

random-labelled datasets through e.g. k-nearest neighbour distance analysis (Figure 1f) or 

frequency distribution analysis (Figure 1g) [6b, 33]. There is no clear evidence of CSRO, which is 

ascribed to a large number of reconstructed atoms departing from their 1st nearest neighbours after 

field evaporation and reconstruction [4]. However, the relationship of 1st nearest neighbour was 

still maintained along a set of {002} or {111} planes in the depth, as indicated in Figure 1e [4, 25], 

leaving a valuable opportunity to search for CSRO in CoCrNi alloys, as already achieved for long-

range orders utilising ML [2a]. 
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Performance of ML-APT in large-scale simulated APT data  

Our ML-APT effectively distinguishes these domains from the fcc matrix in terms of spatial 

distributions (PCC>0.82), morphology, and size distributions (PCC=0.51) (Figure S5). This model 

is also applied to a randomised dataset, enabling the recognition of CSRO forming randomly. The 

PCC of 0.3 (Figure S5g) suggests that our model can classify reliably CSRO and random structures.  

 

Influence of only analysis of same-species elemental pairs 

Analysis of same-species elemental pairs is sufficient to extract the 3D quantitative information 

on multiple CSRO configurations in CoCrNi alloys. For a 𝑛-component system, there are 𝑛(𝑛 −
1)/2 independent correlation functions. In a binary A-B system, one would usually compute and 

display the A-B correlation function. However, if one had only measured the A–A correlation, it 

would also be sufficient, because of the additivity rule (1=A-A plus A-B). The same rule applies 

for ternaries and there are 3 independent correlation functions. In principle, one could deduce the 

A-B, A-C, B-C correlation functions from measured A-A, B-B and C-C. A detailed theoretical 

analysis has been made [34] to provide a solid support of our opinion. 

 

For example, the Ni-Ni repulsion on {001} suggests that the Co or Cr element has a higher 

probability to occur on neighbouring planes. Thus, Ni-Co or Ni-Cr pairs on {001} planes can be 

deduced. Based on same-species elemental pairs, and the information derived for cross-species 

elemental pairs, we can rule out other possible structures and determine L12/DO22-type CSRO with 

the Ni-Ni repulsion on {001} as shown in Figure 4a, and that is the most often experimentally 

observed. It is also similar along <111>. Our MC simulations in Figure S17 can confirm the 

tendencies for L12 or D022 or L11- CSRO only based on the same-species elemental pairs 

information, although cross-species elemental pairs can be well-predicted.  

 

Structures predicted by Monte-Carlo simulations below 900K 

Without spin-polarisation, the Ni2Cr (oI6) structure, as revealed by the special point of (2/3, 2/3, 

0) in the calculated CSRO diffuse intensity map (αq, in Figure S12 d and e), is suggested to be 

stable below around 900K with the partitioning of Co and Ni against Cr as shown in Figure S12 
[16]. Further partitioning of Co against Cr (i.e. -Cr-Ni-Ni-Cr-Co-Co- stacking sequence along [110] 

of the fcc lattice) is predicted below around 225K; this is, without spin-polarisation, also the 

structure of the lowest ground-state energy found in this study, as shown in Figure S12a.  

 

Influence of magnetism on predicted CSRO structure 

The influence of magnetism on predicted CSRO structure has been further studied. Considering 

the experimental small magnetic transition temperature of CoCrNi of a few K only [35], a 

paramagnetic approach is considered in which for each atomic configuration, the total energy is 

averaged over different magnetic states [16].  

 

Figure S17 shows 𝛼𝐪  projected to high-symmetry points in the first Brillouin zone at high 

temperatures with and without considering spin polarisation. Magnetic effects increase the overall 

CSRO parameters. This is attributed to the coupling of magnetic and chemical interactions. 

Inclusion of spin polarisation also changes the CSRO intensities qualitatively. Particularly, the W 

peak (characteristic for the DO22 structure) disappears and the X peak (characteristic for the L12 
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structure) is significantly intensified. It is suggested that this intrinsic interaction between 

magnetism and CSRO is responsible for the different experimentally observed CSRO facets.  

 

Compositions of CSRO domains 

The compositional distributions (Co, Cr, and Ni) of recognised Ni-Ni CSROs domains from Figure 

3a are shown in Figure S19. As compared to those from the original data, there is no significant 

difference between them. The calculated average composition of each element from CSRO 

domains is almost the same as that from the original data considering the variance, meaning that 

only the ordering changed and not the composition. It is similar to that along <111>. 

 

Comparisons between different pulsing modes   

We compared the results from laser and voltage pulsing modes, as shown in Figure S11. The ML-

APT results based on different pulsing modes are generally consistent, e.g. Ni-Ni L12/DO22 

CSROs exist after the annealing. The individual value of µ appears different, which may be due to 

a better control of the field evaporation conditions, and more pronounced differences in the 

evaporation fields of the different species at lower temperature [36]. In any case, and as supported 

by the literature, the depth resolution in laser pulsing mode is sufficient 41, and was chosen as it 

leads to larger datasets that provide better statistics. 

 

Comparison of APT data analysis for two {111} grains   

We collected another group of APT data lifted out from a neighbour grain with an orientation close 

to the (11̅1) planes, supposing that our first set of data was obtained near (111). The results are 

shown in Figure S20. First, the same types of L11-CSRO are found, shown in Figure S20a, and the 

number density of L11-CSRO is also similar in Figure S20b. This is reasonable because of the 

symmetries of the fcc system. However, it should be noted that only a single L11-CSRO can be 

imaged at a time, yet there are four <111> variants. Thus, for simplicity, we can multiply the 

number density obtained from one {111} plane by four to estimate the total number densities, thus 

establishing a quantitative relationship between CSRO and its properties. 

 

Definition of high-quality APT data   

We investigate the variation of the in-depth resolution by scanning the z-SDM around the {002} 

pole, as demonstrated in Figure S22. As had been done in previous study for the resolution [37], 

Gaussian functions are fitted to the central peaks of the resulting z-SDMs to ascertain the σ values, 

facilitating the measurement of in-depth resolution. The calculated σ increases from 0.016 to 0.084 

nm as the radius varies from 0-2 to 8-10 nm. However, the average σ, based on the 10-nm radius 

zone, is approximately 0.037 nm, smaller than the 0.07 nm value applied in the large-scale 

simulation mentioned above. A lower σ value indicates higher data quality. Using a large-scale 

simulation with a σ value of 0.07 nm confirms that the presently collected data is of sufficient 

quality for CSRO analysis in CoCrNi. Here, we propose a procedure to assess the quality of APT 

data for CSRO analysis in CoCrNi via ML-APT. 

 

Firstly, the pole must be observed for subsequent analysis. Secondly, the change in in-depth 

resolution should be determined by scanning the z-SDM around the specific pole, similar to Figure 

S22. The obtained σ values should ideally be less than approximately 0.08 nm in CoCrNi. The 

first peak near the center becomes unclear when the σ value exceeds 0.08. Thirdly, applying a 
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large-scale simulation that mimics the experimental conditions to validate the model's performance, 

as depicted in Figure S5 and Figure S18a. 

 

This procedure can be adapted to other alloying systems, although certain crucial thresholds may 

need adjustment. 

 

Effect of peak overlap of different species, hydrides, detector efficiency, and instrument on 

quantitative CSRO analysis 

Peak overlap and hydrides: After carefully analysing the mass-to-charge curve in Figure S14, it is 

observed that only Cr2+ ions are present without any Cr hydrides or peak overlapping. Additionally, 

Co mainly exists as Co2+, and the likelihood of peak overlapping at 29.5 Da between Co2+ and 

NiH2+ is very low (NiH2+ was never reported in the analysis of metallic systems). To evaluate the 

overlap at 59 Da between NiH+ and Co+, we compare the experimental isotope ratios of Ni+
 with 

the natural abundances, as listed in Table S4. The minute difference observed suggests the presence 

of a very small fraction of NiH+ at 59 Da. This minimal overlap is expected to have a negligible 

effect on the results. Overall, there is no significant influence on the results in terms of the peak 

overlap and hydrides in the current work. 

 

Detection efficiency and instrument: The large-scale simulation in Figure S5 used a 52% detection 

efficiency, and the ML model obtained, trained by simulated data incorporating a range of 

imperfect detection efficiencies (ranging from 0.2 to 0.7, as shown in Table S3), effectively 

resolves CSRO. Hence, the current adoption of 5000XR (with reflection) data with a detection 

efficiency of 52% is deemed sufficient for CSRO analysis. While the 5000XS (without reflection) 

data offers an efficiency of 80% and slightly better lateral resolution, there is a higher likelihood 

of potential peak overlapping and tailing, which could exacerbate the situation. Based on our 

experience, the 5000XR data is the optimal choice for CSRO analysis, given its favourable peak 

splitting ability and sufficient detection efficiency. 
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